Final Degree Thesis

Bachelor’s degree in Industrial Technology Engineering (GETI)

Motion Planning and Control Pipeline
for a Formula Student Autonomous

Vehicle
January 17, 2024
Author: Oriol Martinez Fité
Director: Viceng Puig Cayuela

Presentation: 29/01/2024

20
Yy
~) Jx“,’b
ETSEIB

Escola Técnica Superior
d’Enginyeria Industrial de Barcelona

&

Acknowledgements

First of all, I would like to thank my teammates at BCN eMotorsport, whose collaborative effort
and countless hours of work have made the development of the CAT15X race car possible. The
dedication and passion exhibited by each member of our team have truly made this project
possible.

I'would also like to make an special mention to the Electronics, Perception and Control members
with whom I've had the privilege to work side by side with the main objective to enhance the
driverless performance of CAT15X. Furthermore, I would like to extend my sincere appreciation
to the Chassis department, for their true commitment to the team when we needed them the
most.

Lastly, I want to express my gratitude to my mentors and fellow team members, Antoni Salom
and Oriol Gorriz, who provided essential guidance and support during my initial year at BCN
eMotorsport.

I would also like to thank my advisor Viceng Puig for his wise advises and recommendations
throughout the 2022-23 Formula Student season.

Finally, this thesis is dedicated to my family for their incredible support during my two years
long Formula Student experience.

Abstract

In this thesis, a comprehensive high-level autonomous driving control pipeline, along with an
optimization-based motion planning algorithm, is proposed, detailed, and implemented into
BCN eMotorsport’s Autonomous Systems Control software stack.

The main goal of the presented algorithms is to improve the competitiveness of BCN eMotor-
sport’s autonomous vehicle, the CAT15X, reaching levels of performance and reliability never
seen throughout the team’s history.

In section 3 a Nonlinear Model Predictive Controller is proposed in order to handle the lateral
behaviour of the vehicle using the curvature-based dynamic bicycle model presented in section
2.3.

In section 4 an Adaptive Cruise Controller is proposed in order to handle the longitudinal
behaviour of the car, closely following the self-computed velocity profile defined in section 4.2.

Finally, an offline Optimization-based Motion Planning algorithm is proposed in section 5.
This algorithm utilizes the dynamic bicycle model, introduced in section 2.3, as its predictive
basis.

The implementation procedure as well as the simulation results for all the presented algorithms
are also specified. In addition, the real testing performance of the proposed control pipeline is
detailed in section 6.

The complete software designed and implemented within this thesis can be found in:
e Lateral MPC
e Cruise Controller

e Trajectory Optimizer

https://github.com/fetty31/tailored_mpc
https://github.com/fetty31/cruise_control
https://github.com/fetty31/trajectory_optimizer

U"n‘nﬂ
AT
ETSEIB

Contents
Acronyms 5
Nomenclature 7
List of Figures 9
List of Tables 10
1 Introduction 11
1.1 Formula Student Competition 11
1.1.1 Driverless dynamicevents 12
1.2 BCNeMotorsport 14
1.3 Stateoftheart e 15
1.3.1 Driverlesscontrol 15
132 MotionPlanning Lo L 16
1.3.3 Outside Formula Studentscope 17
14 Objectives e 17
1.5 Specifications 17
1.5.1 Control Specifications L 0. 18
1.5.2 Motion Planning Specifications 18
1.6 Requirements 18
1.6.1 Control Requirements 18
1.6.2 Motion Planning Requirements 19
1.7 Workplan 19
2 Vehicle Model 21
2.1 Kinematic BicycleModel oo o 21
2.1.1 Curvature-basedmodel 22
2.2 Dynamic Bicycle Model 23
221 Lateraltiremodel 23
23 Finalapproach 26
3 Lateral Model Predictive Controller 28
31 Concept. e 28
3.2 Non Linear Optimization Problem Formulation. 28
321 Equality Constraints 29
322 Inequality Constraints 29
323 CostFunction e 30
33 Implementation 31
331 Solver. 31
3.3.2 Algorithmpseudocode o 33
3.3.3 Module architecture 34
34 Results e e 34
341 Weightanalysis 35
3.42 DPerformance e 39
4 Cruise Controller 43
41 Concept. e 43

0
TR
~) Jx"_'b

ETSEIB

42 Velocity Profile Calculation, 43
43 PIDFormulation e 45
431 Anti-windup 46

432 AdaptivePID 46

44 Implementation 46
45 Results s, 47
45.1 Velocity profile verification, 49

5 Trajectory Optimization 51
51 Concept. e 51
52 Pre-processing 51
5.3 Non Linear Optimization Problem Formulation. 53
53.1 Spatial Transform L L 54

532 CostFunction e 55

5.3.3 DPeriodicConstraint 55

5.3.4 Inequality Constraints 55

54 Implementation 57
541 Solver. e e e 57

55 Results s, 58
6 Overall Testing Results 62
6.1 Solvetime e 62
6.2 Exitflags 63
6.3 Performance 64
7 Budget 66
8 Environmental Impact 67
9 Conclusions and Future Work 68
References 71
Appendices 72
A Testing parameters set 72
A.1 Lateral MPC e 72
A2 Cruise Controller e, 72

B Motion Planning parameters set 73

Acronyms

AS Autonomous Systems

FS Formula Student

FSG Formula Student Germany competition
FSS Formula Student Spain competition

CV Internal Combustion Vehicle

EV Electric Vehicle

HY Hybrid Vehicle

DV Driverless Vehicle

DC Diriverless Cup

UPC Universitat Politecnica de Catalunya
ETSEIB Escola Tecnica Superior d’Enginyeria Industrial de Barcelona
ETSETB Escola Tecnica Superior d’Enginyeria de Telecomunicacié de Barcelona
4WD Four Wheel Drive

MPC Model Predictive Control

NLOP Non Linear Optimization Problem

CAN Controller Area Network

PU Processing Unit

PID Proportional-Integral-Derivative controller
CPU Central Processing Unit

ROS Robotic Operating System

ECU Electronic Control Unit

ODE Ordinary Differential Equation

CoG Center of Gravity

SLAM Simultaneous Localization And Mapping

API Application Programming Interface

Nomenclature
ap/r Slip angle at Front/Rear wheel [rad]

B CoG slip angle [rad]

) Steering angle in wheel frame [rad]
K Curvature [m™!]
1 Heading with respect to the reference path [rad]

0 Heading of the car on global frame [rad]

¢ Slack variable [—]

ay Longitudinal acceleration [7]

ay Lateral acceleration [75]

Dy r Orthogonal distance from CoG to the Left/Right track limits [m]
F,, Motor force [N]

F, Longitudinal force [V]

F, r/r Lateral Front/Rear force [V]

g Gravitational acceleration [7]
I, Moment of inertia over the z-axis [kgm?]
L Longitudinal distance from CoG to the furthest corner of the car [m]

lp/r Length from CoG to the Front/Rear axle [m]
m Vehicle’s mass without driver [kg]

M. Moment over the z-axis [Nm]

n Orthogonal distance to the reference path [m]

s Progress along the reference path [m]

Vg Longitudinal velocity on vehicle frame["]

Uy Lateral velocity on vehicle frame []

w Lateral distance from CoG to the furthest corner of the car [m]
w Yaw rate [%]

x Position on the global x-axis [m]

)

Position on the global y-axis [m]

List of Figures

IO U1 WIN -

Formula Student competitions around the globe. 11
Trackdrive track layout.o oo oo 13
Acceleration track layout. oo L Lo Lo 13
Skidpad track layout. Lo oo 14
CATISX. . . e 15
BCN eMotorsportteam. o o 15
GanttChart. 20
Kinematic bicyclemodel. o o 21
Curvature-based kinematic representation. 22
Lateral tire model comparison. 24
Simplified Pacejka tiremodel. o L oo 25
Curvature-based dynamic bicyclemodel. 26
Lateral MPC diagram. 34
Lateral distance vs Curvature correlation. 36
Lateral distance comparison. Lo Lo oo 37
Torque Vectoring additional moment setpoints. 38
Steering rate comparison. Lo oL 38
Steering commands comparison. L 38
FSS Actual vs Targetyaw rate. L oL 39
FSS Actual vs Target lateral velocity. 39
FSS Actual vs Target steeringangle. 40
FSG Actual vs Targetyaw rate. 40
FSG Actual vs Target lateral velocity. 40
FSG Actual vs Target steeringangle. 41
Exitflagsbarplot. 41
Lateral MPCsolve time. 42
Closed velocity profile of FSStrack. 45
Cruise Controller diagram. 47
Actual vs Target longitudinal velocity. 438
ESS throttlecommands. L oo 48
FSS track GG diagram (in SIunits).. 49
Lap timein FSStrack. L o 50
Gate generation diagram.o 52
Ellipse of forces constraint. L L oL 56
GGplotconstraint. 56
FSS Midline vs Optimal trajectory. 58
FSG Midline vs Optimal trajectory. 59
Longitudinal velocity profile. 60
Lateral velocity profile. L 60
Yawrateprofile. 61
Testing tracks. 62
Solvetime. 63
Exitflags. e 63
Actual vs Target long. velocity. 64
Actual vs Target steering angle. 64
Actual vs Targetyaw rate. L Lo 64
Actual vs Target lateral velocity. 64

48 Lateral deviation.

49 GG diagram

ot
TSE
List of Tables
1 Maximum awarded points. Lo L L oo 12
2 Budget 66
3 Lateral MPC parametersset 72
4 Cruise Controller parametersset 72
5 Trajectory Optimizer parametersset 73

10

1 Introduction

1.1 Formula Student Competition

Formula Student is a prestigious global engineering competition that tasks university students
with the design, construction, and racing of Formula-style race cars. The competition serves as a
platform for students to apply their theoretical knowledge to real-world engineering challenges
while promoting innovation and practical skills. Teams of university students participating
in Formula Student are required to design every aspect of the race car, including the chassis,
suspension, powertrain, aerodynamics, electronics, build in software, etc. These designs must
adhere to strict safety regulations and budget constraints.

Figure 1: Formula Student competitions around the globe.

The competition is split into Internal Combustion Vehicles (CVs), including Combustion Hybrid
Vehicles (HYs), and Electric Vehicles (EVs). Vehicles of both classes can take part in an addi-
tional Driverless Cup (DC), which involves providing the car with full autonomous capabilities
so it can navigate through cone-delimited tracks without any external communication.

The competition includes both static and dynamic events. Static events evaluate the teams’” en-
gineering knowledge and project management skills. These events include presentations on the
technical design of the single-seater, cost reports, and a business plan. On the other hand, dy-
namic events test the car’s performance, agility and reliability under racing conditions through
the following events: acceleration, skidpad, autocross, endurance and trackdrive races.

11

The overall score for EV (& CV) and DC competitions are:

Discipline EV & CV DC

Statics Business Plan 75 points -

Cost and Manufacturing | 100 points -
Engineering Design 150 points | 150 points

Dynamics Acceleration 50 points -
Acceleration Driverless 75 points 75 points

Skidpad 50 points -
Skidpad Driverless 75 points 75 points

Autocross 100 points -
Autocross Driverless - 100 points

Endurance 250 points -

Efficiency 75 points -
Trackdrive - 200 points
Overall 1000 points | 600 points

Table 1: Maximum awarded points.

In summary, Formula Student is a prestigious international competition that challenges univer-
sity students to design, build, and race Formula-style race cars, providing a unique opportunity
to apply theoretical knowledge, foster innovation, and gain practical engineering skills that can
significantly benefit their future careers. There exist many competitions held all over the world,
although most of the competitions take place in Europe. The most important FS competition
called Formula Student Germany (FSG) takes place in the Hockenheimring, Germany.

1.1.1 Driverless dynamic events

The dynamic events in Formula Student are the on-track events where the performance of the
teams’ vehicles is tested. Every dynamic event consists of a race against the clock as wheel-
to-wheel races are absolutely forbidden. Here are the details of each dynamic event involving
driverless vehicles:

Autocross: This event tests the car’s dynamic ability in a one-lap sprint on an unknown track.
The car must finish the event as fast as possible while avoiding any collisions with the cones
placed on the track. This event happens to be the most relevant challenge for driverless cars
since it requires a reliable cone detection, a fast path planning algorithm, an accurate enough
SLAM module and a robust control pipeline.

12

oo

W
d;

‘_'Lﬁf

$Y;

ETSEIB
Trackdrive: This event evaluates the reliability and endurance of autonomous vehicles. The car
must navigate a set course on the Autocross track until ten laps are finished. Here the precision

of the SLAM module and the reliability of the control pipeline are extensively tested.

(5

B Yellow/Blue Cone

Small/Big Orange Cone

Red TK Marking & TK Equipment
(Shape undefined)

10 Laps

. 5 m max.

A

] 1 !

: |
' Aea | £ . 6m Sttt
1 | g 1 Position
1 | e 1

L
||
]
u optional
Track Limit Lines

Figure 2: Trackdrive track layout.

Start / Finish Line

Acceleration: The Acceleration event evaluates the car’s acceleration in a straight line, from a

standing start, over a distance of 75 meters. The performance of the car in this event is evaluated
based on the time it takes to reach the finish line.

B Yellow/Blue Cone

A ‘ Small/Big Orange Cone
Red TK Marking & TK Equipment

(Shape undefined)
03m_| 75 m 75m
Staging Line
Start Line Finish Line

I KA m mom E N ‘_I..A__A__A A _A>

1) } 1 »

[} Start) £ |

! Position ! £ | Stop ;

| [l £ | Area t
] 1 « I |
S i -

max.

—-A--y--y Ny

Figure 3: Acceleration track layout.

13

, 2D

)

3

(L

<

be.

ETSEIB
Skidpad: The Skidpad event measures the car’s lateral grip on a flat surface while making a
constant radius turn. The skidpad track consists of two pairs of concentric circles in a figure of
eight pattern with fixed and previously known dimensions. The performance of the car in this

event is evaluated based on the lap time mean of both second turns on each circle.

¢<
=

I m

W Yellow/Blue Cone "1_]‘7

Small/Big Orange Cone S

' -
[
Red TK Marking & TK Equipment : Stop :
(Shape undefined) ' Arca | -
I | E
. ™
1 [eI -]
1 ! m
] 1 L — oy
.__1__:‘ -
g =~ e
. By — .
Exit C ' w
no _exi one
- v
B fi52%5n !,-; 1825m, I N 300m
B ¢ ’ .

a4 g

optional
Track Limit Lines

15m

| Start

4
[}
|
[}

I Position :

I

-

Figure 4: Skidpad track layout.

1.2 BCN eMotorsport

BCN eMotorsport is the Formula Student team from Barcelona, born out of the collaboration
between UPC’s ETSEIB and ETSETB engineering faculties. It was established in 2007 by the
name of ETSEIB Motorsport. It started with a combustion prototype and have developed four-
teen more cars since then, each with incremental improvements over the years.

In 2011, the team made a significant advancement by creating the first electric Formula Student
car in Spain, marking an important evolution in their design concept. This was a testament to
their innovative spirit and commitment to staying at the forefront of automotive technology.

In 2018, the team embarked on a new challenge by introducing 4WD capability and creating the
first Formula Student autonomous car in Spain. This was a crucial step forward, reflecting the
team’s ability to adapt to the evolving automotive industry and leverage the latest technology.

The team’s roster has expanded over the years, with students from various disciplines joining
the team. This has allowed the team to bring in diverse perspectives and skills, enabling them
to create some of the best cars in their history.

During the 2021-22 season the first fusion car was developed by the team in order to join together
the manual and autonomous technologies in one and only single-seater. The first Formula Stu-

14

dent car in Spain with manual and driverless capabilities was born.

In summary, BCN eMotorsport is a dynamic team that has made significant strides in Formula
Student, from creating a combustion prototype to developing an electric and autonomous car.
Their continuous innovation and commitment to using the latest technology have set them apart
in the competition.

Figure 5: CAT15X. Figure 6: BCN eMotorsport team.

1.3 State of the art

The state of the art in Formula Student reflects a dynamic landscape where teams continu-
ously push the boundaries of engineering and innovation. The competition serves as a fertile
ground for the development of future automotive technologies, emphasizing sustainability, per-
formance, and the integration of cutting-edge advancements.

Focusing on the driverless category, the best two teams historically have been AMZ from ETH
Ziirich and KA-Raclng from Karlsruhe Institut of Technology (KIT). However, in the last two
seasons, teams such as StarkStrom Augsburg e.V. and Chalmers FS have been able to keep the pace
and win the most important competition FSG in 2022 and 2023, respectively.

The previous achievements made in BCN eMotorsport’s team related to driverless control and
motion planning can be found in [1] and [2]. Without these prior developments the work pre-
sented in this thesis would have not been possible.

1.3.1 Driverless control

The main approach from the top teams in driverless control usually involves a Model Predictive
Controller (MPC) which handles only the lateral behaviour of the car in the case of KA-Raclng
or the complete behaviour, meaning steering and throttle commands, in the case of AMZ.

In [3] AMZ presented a novel non-linear MPC controller capable of handling both steering
and throttle commands with outstanding performance during the 2019 season. This controller
used a cartesian-based dynamic bicycle model, discretized by 50ms, with a solving time mean
of 25Hz (40ms). In [4] AMZ improved their coupled control solution presenting a curvature-
based non-linear MPC, which could run at 40Hz (25ms). This coupled approach reduced the
high level AS control into one and only module, which could lead to a more compact pipeline.
Moreover, the coupled controller takes into account the vehicle dynamics as a whole, unlocking
better performance at high velocities (> 15m/s), where the non-linearities and correlations

15

5D
)
Yo
ETSEIB
between the lateral and longitudinal behaviour of the car are crucial. However, this control

pipeline demands a longer testing time period in order to achieve the same level of reliability
than simpler controllers.

In contrast with this approach, in [5] and [6] KA-RacIng developed a lateral MPC using a lin-
earized dynamic bicycle model and followed a pre-computed velocity profile with a feedfor-
ward PI controller. This decoupled control solution enabled KA-RacIng to achieve a remarkable
performance, winning the 2021 FSG Driverless competition. In particular, the lateral controller
developed by KA-RacIng is formulated as a Linear Time Varying MPC (LTV-MPC) using a time-
discrete linear vehicle model. The linear optimization problem is then solved by a Quadratic
Programming (QP) solver. This fairly simple control pipeline has the advantage of simplifying
the complexity behind the longitudinal behaviour of the car, excluding these dynamics from
the predictive model used by the lateral controller, achieving a really small solve time (10ms).

Nevertheless, in 2022 season, StarkStrom Ausburg e.V. proved that fine-tuned basic controllers
such as a Pure Pursuit could achieve really high levels of performance winning the FSG 2022
competition. The Pure Pursuit controller is a geometry-based path-tracking algorithm com-
monly used in robotics. It guides the vehicle along the desired path by continuously selecting a
target point and calculating the steering angle via a closed geometrical formula, deduced from
the kinematic bicycle model. With the proper amount of testing, this really simple approach
can become a highly reliable lateral controller.

1.3.2 Motion Planning

Regarding FS motion planning approaches a clear distinction must be done between online and
offline software. The former includes all the planning algorithms thought to run in real time,
which usually involve receding horizon approaches, re-estimating the output trajectory for ev-
ery new cone or landmark detected. The latter includes the motion planning algorithms thought
to be executed before the car starts driving. These usually involve more CPU demanding tasks
and depend on a previously computed initial solution. In these last approaches, the navigation
problem is considered solved, and the main objective is to find faster paths for the next laps.

The most widely used approach in FS online trajectory planning starts with a discretization of the
search space using Delunay triangulation or Voronoi diagram. Aferwards a growing tree struc-
ture of possible paths through the already discretized space is performed. Finally an heuristic-
ponderated tree search is done in order to retrieve the best path exploiting the generally shared
characteristics of FS tracks.

In [6] KA-Raclng presents a minimum curvature trajectory planning which runs in parallel to
the middle line generation algorithm. KA-RacIng claims that a reduction in laptime of more than
10% can be achieved. In [4] AMZ presents a novel trajectory optimization algorithm which is
able to compute the final path by solving a one-time prediction over the midline trajectory taking
into account a dynamic bicycle model.

Notice that online strategies fall outside the scope of this thesis. The motion planning approach
presented in section 5 is not meant to search for the correct navigation path but to find an optimal
trajectory given the detected cones for the whole lap. Thus, an offline approach is presented in
this thesis.

16

D
Y
Yy
ETSEIB
1.3.3 Outside Formula Student scope

In the field of autonomous driving, a revolutionary fusion of advanced technologies, artificial
intelligence and advanced control strategies is propelling the automotive industry toward a
future where vehicles navigate complex environments without human intervention. Central to
this transformation are sophisticated sensors, such as Lidar and radar, that provide real-time
data, coupled with powerful machine learning algorithms enabling vehicles to adapt to diverse
driving scenarios. The state of the art in autonomous driving is a rapidly evolving narrative,
marked by breakthroughs and a collective push toward a future where driving is not just a task
but an immersive and automated experience for passengers.

In order to widen the scope outside of FS applications, the author has considered the following
published works: Roborace high level control approaches in [7], Adaptive MPC strategies in
[8] and [9], control look-ahead analysis in [10], minimum laptime for electric vehicles in [11]
and, finally, optimization-based control for RC cars in [12].

1.4 Objectives

The main purpose of the algorithms presented in this work is to increase the competitiveness of
the CAT15X single-seater, the BCN eMotorsport car for the 2022-23 season. The first objective is
to obtain a longitudinal and a lateral controller capable of finishing all Formula Student dynamic
events with competitive lap times. In second place, to obtain a motion planning module capable
of unlocking optimal performance in the Trackdrive event. In order to fulfill this purpose, a set
of requirements and specifications, which are detailed below, must be taken into account.

1.5 Specifications

From the Formula Student dynamic events definition, different specifications for Automatic
Control and Motion Planning arise. The control pipeline presented in this work has to be able
to drive the car through all the dynamic events stated in section 1.1.1 using a different set of
parameters for each event, seeking optimal performance for all the events.

In fact, the lateral MPC presented in section 3 aims to achieve maximum performance in Au-
tocross and Trackdrive where the inherent difficulties of both events bring up a major challenge
for the control module. Thus, although the controller presented in section 3 must be able to fin-
ish all dynamics events, Autocross and Trackdrive performance will be engaged. Less complex
solutions (e.g. Pure Pursuit or Stanley controllers) are found to be more appropriate for the
rest of the dynamics events, where the fixed and known track dimensions result in more stable
planned trajectories and fewer vehicle dynamics non-linearities.

The motion planning approach presented in section 5 is only thought to be used in the Track-
drive event as it depends on (i.e. takes as input) the detected cones positions for the whole
track.

Finally, the Cruise Control presented in section 4 has to be able to achieve optimal performance
in all the dynamic events. It will be used in all of them.

17

1.5.1

D
fy
\'ld‘ -‘.'.'l
ETSEIB
Control Specifications

The Control module must:

Remain reliable for all the feasible velocities range, from 0 to 100 kTm

Run at a sufficient update rate ensuring real-time performance. A minimum loop rate of
40 Hz is set.

Follow a racing driving style. The main purpose of the control module is to be able to run
as fast as possible keeping the car under control. An average velocity of 12 * is set.

Prioritize easy to tune formulations due to the limited testing schedule.

1.5.2 Motion Planning Specifications

The Motion Planning module must:

1.6

Compute feasible trajectories based on vehicle’s dynamics limitations.

Output the resulting trajectory as a continuous curvature object. Thus, 2,4 derivative
continuous spline representation will be used.

Minimize curvature in order to obtain racing alike paths. In fact, maximum progress rate
will be ensured, resulting in minimal curvature trajectories.

Requirements

The existing implementation requirements of the Control and Motion Planning solutions pre-
sented in this thesis are detailed in the following subsections.

1.6.1

Control Requirements

Processing Unit powerful enough to execute the C++ implementation of the algorithms
under a ROS framework instance on a real-time basis.

Actuators precise enough to act on the car without major jitter. Corresponding to an au-
tonomous steering system, an emergency braking system and continuous communication
to the DC-AC inverters for setting torque setpoints.

Sensors for current car state feedback. Specifically, the localization of the car in track
(given by the SLAM module), the actuators position (current steering angle) and the
current velocity and inertial measurements of the car.

Fast communication between the PU and the ECUs controlling the given actuators or/and
receiving data from the multiple sensors. This is done using CAN, so a CAN Decoder and
Encoder are needed.

Online Path Planning module computing a reference trajectory and its velocity profile.
For curvature-based approaches like the one presented in section 3, continuous curvature
reference paths are needed.

18

1.6.2 Motion Planning Requirements

e Processing Unit.
e Perception system capable of detecting the cone’s positions, hence the limits of the track.

e The current position and heading of the car so the correct part of the computed trajectory
is sent over to the control module.

1.7 Workplan

The work presented in this thesis was carried out entirely within the five-month timeframe lead-
ing up to the commencement of the Formula Student Competitions. Here a detailed explana-
tion of the time needed for the development of the different algorithms and their corresponding
subtaks is presented. The total time span was approximately 20 weeks.

19

Trajectory Optimization

NLOP Formulation

C++ Implementation

Motion Planning module finished
Simulation Testing

On-track Testing

Lateral MPC

NLOP Formulation

C++ Implementation

Lateral controller module finished
Functional Testing

Simulation Testing

On-track Testing

Cruise Controller

Controller definition

C++ Implementation
Longitudinal controller module finished
Simulation Testing

On-track Testing

ERAT

ETSEIB
February March April May June
11234 6|7 10{11(12|13|14|15|16|17|18|19|20

Figure 7: Gantt Chart.

20

2 Vehicle Model

The quality or precision of the mathematical model used to describe the system plays a critical
role in predictive control. Choosing an appropriate model is usually a relevant and critical task
which will depend on the current scenario and the control strategy. The system aimed to control
in this work is a Formula Student racing vehicle, therefore a vehicle model that describes the
behaviour of the car on track is mandatory in order to implement a predictive-based control
solution.

Vehicle modeling is an state of the art concern widely studied in multiple engineering disci-
plines. In control theory, not only the physics principles of the model are important but also its
discretization and integration methods as well as the linearization strategy (if applied). In this
work, following the requirements stated in section 1.6.1 non linear model approaches will be
addressed. Specifically, the kinematic and dynamic bicycle models are presented. Four-wheel
drive models, defined in [13] are left apart due to their much higher computational load. In
addition, the presented models will always assume that the system evolves in the two dimen-
sional special Euclidean group (SE(2)), so 3 DOF will be considered (2 translation axis X,Y
and 1 rotation axis Z). This assumption is consistent within Formula Student environments,
where the track is a flat surface without elevation.

2.1 Kinematic Bicycle Model

The kinematic model provides a simple mathematical description of the vehicle movement with
a set of trigonometric relationships. This steady-state approach neglects any lateral tire forces
and works under the assumption of null skidding. This model is well known in the literature
(e.g. [14]) to perform well at low speed profiles (less than 5m/s) and yields a very simple
formulation that can be suitable for basic applications.

x veos(f +)
g| = |vsin(0 + B) (1)
0

w

With 3 as the CoG kinematic side slip angle:

lr
Figure 8: Kinematic bicycle model. f = arctan(In+lp tan(9)) (2)

Where #, § and 6 represent the longitudinal, lateral and angular velocities, respectively, in global
frame (see Figure 8). The CoG slip angle is represented by 5 and it’s the angle between the
velocity vector v and the longitudinal axis from the body frame (or vehicle frame).

Note that, from a numerical perspective, this model is singular at v = 0 and therefore not con-
trollable at this point. In [15] a reference-based kinematic model is presented in order to avoid
this singularity.

21

2.1.1 Curvature-based model

For control purposes, a kinematic transformation from Cartesian to Curvature (Frenet-Serret)
coordinate frame can be easily applied. This coordinate change can result in a more compact

representation (see section 2.3), obtaining the heading and lateral position errors with respect
to the reference path.

Figure 9: Curvature-based kinematic representation.

From Figure 9, it’s possible to deduce two distinct expressions for the car’s longitudinal velocity
in the trajectory frame. They are set to be equal:

(R —n)we = vy cosf — vysinf (3)
From this, defining x = 1/R, the rate of change of the desired heading angle is:

Uz cOs 0 — vy sin 6

4
= (4)
Using equation (4), the time derivative of the progress along the reference trajectory s is:
s Vg OS8O — v, sinf
2 —§=Rw,.= Y 5
ot~ ° e 1—yk (%)
With direct inspection, the evolution of the rest of variables is clear:
0
%zh:vxsinu%—vycosu (6)
0
%zﬂ:w—wczw—/@(s)aé (7)

22

Finally, the curvature-based model can be stated as:

Vg COS [L—Vy Sin i

“é 1—nk(s)
N = |vgsin p + vy cos (8)
1 w — k(s)$

2.2 Dynamic Bicycle Model

The dynamic representation is characterized by taking into account the vehicle acceleration, so
forces are used for the vehicle movement calculation. Thus, this model takes into account the
front and rear lateral tire forces as well as the yaw moment caused by them. The dynamic model
is more appropriate for working at higher speeds because it includes the tire model which is of
special interest in the study of vehicle dynamics. Most of the non-linearities present on the
vehicle behaviour are due to the interaction between the tires and the road surface, so a precise
tire model plays a critical part in every dynamic model. The dynamic bicycle model is expressed
as follows:

E2 [v cos(f) — vysin(0)

g Vg 8in 6 + v, cos 0

e . ©)
Uy 1%(}'} — Fy, psind + muyw)

Oy ﬁ(Fy’R + Fy pcosd — muw)

w_ _E(Fy,pcosélp—Fy,RlR—&-MZ)_

Here v, v, and w represent the longitudinal, lateral and yaw acceleration.

In this model, the longitudinal or motor force F, is assumed to be applied on the CoG, so the
longitudinal force expression is:

F,=F, —C, — SCy? (10)

Where C, stands for rolling resistance coefficient and SCyq = % PairACq is the aerodynamic drag
coefficient.

2.2.1 Lateral tire model

The lateral force in a tire, or equivalently the tire stiffness, depends on multiple variables such
as the slip angle, the tire pressure, the vertical load, the camber angle, the rubber temperature,
etc. For control purposes a desired trade-off between computational complexity and accuracy
must be considered. Because of this, a very common approach is to express the lateral force as
a function of slip angle.

23

B

g

m St
(/2]

m &3
@ Pecet

Lateral Tire Model

3000 T
Simplified
Pacejka 6.1
/ —_——
2500 Inear

2000

1500

Fy [N]

1000

500

0 1 1 |
0 5 10 15 20

slip angle [2]

Figure 10: Lateral tire model comparison.

Assuming that the vehicle will always have small slip angles the tire model can be considered
a linear function where the lateral force is proportional to the slip angle as follows:

F, r/r = Cr/rOF/R (11)
Where Cr p are the cornering stiffness coefficients of the front and rear tires.

In Figure 10, the linear approach stays valid for slip angles lower than 5 degrees. However,
when this threshold is exceeded, this model assumes that the tire will be able to withstand
excessively elevated forces. This assumption will lead to grip loss situations and potentially
unstable scenarios.

In Formula Student racing conditions, the linear assumption is too far away from reality because
slip angles can go up to 10°. Thus, a more precise approximation for the lateral tire force is
needed. The Simplified Magic Formula, a simplification of the Magic Formula by Hans Pacejka
[16] provides a non-linear approach to calculate the resulting force from a wider range of slip
angles.

Fy, r)r = F. ryrDr/rsin (Cp g arctan (Bp/par/R)) (12)

Where F /R represents the vertical load at each tire and the Pacejka constants Dy, Cr g and
B represent the peak value of the curve, the shape factor and the stiffness factor, respectively.

24

SRy
A N
L&y
ETSEIB
The normal force at the bicycle model front and rear tires is calculated as follows:
F, r (13)
z =m
o’ Tir + 1z
lp
F,r= 14
R =My (14)
Slip angles are calculated as follows:
l
OzF:arctan(Uy—z Fw)—é (15)
—1
apR = arctan (Uy Rw)
Uz

This last approach stays close enough to the complete Pacejka Tire model, offering a straight-
forward expression with only three parameters per wheel/axle. It’s the chosen tire model for
this thesis. In Figure 11, the Simplified Pacejka model used is shown, staying consistent with
the slip angle definition stated above.

Simplified Pacejka Model
3000 T T T T T T

2000

1000

Fy [N]
(o)

-1000

-2000

-3000 : :
-20 -15 -10 -5 0 5 10 15 20

slip angle [2]

Figure 11: Simplified Pacejka tire model.

It’s important to highlight that for significant slip angles, exceeding 10 degrees, both models
notably differ as the complete Pacejka model reduces the maximum available lateral force while
the simplified approach stays almost constant. This behaviour must be taken into account by
the controller in order to avoid high slip situations, where the model trade-off is unacceptable.

25

2.3 Final approach

In this work, the dynamic bicycle model is used in sections 3 and 5 with some useful modifica-

tions in order to make it more suitable for predictive control applications.

As demonstrated in section 2.1.1, following trigonometric/kinematic relationships it’s possi-
ble to transform any Cartesian-frame to Curvature coordinate frame in order to express spatial
variables with respect to the reference path or trajectory. This transformation changes the repre-
sentation of the 3 DOF from [z, y, 0] to [s, n, u], where s represents the progress along the path,
n represents the orthogonal distance from the CoG to a trajectory point (at a specific progress)
and y is the angle between the x-axis of the vehicle and the trajectory direction (or derivative).

Figure 12: Curvature-based dynamic bicycle model.

The curvature-based dynamic model’s expression is as follows:

Vg COS 41—y SiD L1
1—nk(s)

Vg SN 4 + vy COS [
w — K(s)$
L(F, — Fypsiné + moyw)

L(Fy R+ F,Fcosd — muw)

1

I

(Fy,F cosOlp — Fy,RlR + Mz)

(16)

This transformation makes it possible to remove the progress s state from the model relying on
its initial guess to evaluate all quantities depending on it. The progress along the trajectory is
given as an input by the path planning algorithm and so is the curvature for each progress x(s).

26

, 2D

)

3

<t

>
ETSEIB

<
Y

Because the progress rate s = % expression depends only on other state variables and the given

input x(s), it is possible to calculate the progress evolution over the whole time horizon outside
the Optimization Problem module, which reduces its computational load.

The complete vehicle model used in this thesis is:

6 A6
P AF,,

n Vg SIN f1 + Vy COS 4

o = w — K(s)s (17)
Uy L(F, — F, psiné + moyw)

Oy %(Fy,R + Fy F cosd — muzw)

W i(Fy,FCOS(SlF—Fy’RlR—I—MZ)

Where the control variables are u = [Ad, AF;,,, M| and the state variables are z = [0, Fiy,, n, 1, Uz, Uy, W).
Here, M, variable is considered an additional or extra moment over the z-axis, that’s why is set
as a control variable.

27

=N

Sy

WO
ETSEIB

3 Lateral Model Predictive Controller

3.1 Concept

Model Predictive Control (MPC) is an advanced control strategy employed in various engineer-
ing and industrial applications to optimize the performance of complex systems. It considers
a prediction model of the system’s behavior over a finite time horizon and seeks to optimize a
specific objective function while adhering to system constraints. This predictive nature allows
MPC to efficiently handle complex systems with nonlinear dynamics and constraints.

MPC relies on a mathematical model of the controlled system. This model describes how the
system’s state variables evolve over time and is typically represented by differential equations.
The quality of this model is crucial, as it directly impacts the controller’s performance. It can
be a linear or nonlinear representation of the system dynamics and is typically derived from
physical principles (or data-driven approaches [17]).

MPC operates in a receding horizon fashion. It repeatedly solves an optimization problem over
a finite future time horizon. The control horizon defines the future time steps over which the
control inputs will be optimized, while the prediction horizon extends further to make pre-
dictions about the system’s behavior. In this work, there won’t be any difference between the
control and the prediction horizon as they will always have the same length.

Here, a Curvature-based Nonlinear Model Predictive Controller is presented in order to con-
trol the lateral behaviour of BCN eMotorsport’s vehicle.

3.2 Non Linear Optimization Problem Formulation

The Non Linear Optimization Problem, from now on NLOP, is formulated with the objective
of achieving, firstly, optimal steering target commands, secondly, to keep the vehicle inside the
dynamic bounds constrained by the vehicle model, defined in section 2.3, and the reference
trajectory, and finally, to apply soft control commands in order to avoid damaging the hardware.

The state vector z is defined as = = [6,n, i1, vy, w]” and the control vector u is defined as u =
[AS, My,)T. Note that the s-state is decoupled as explained in 2.3 and the variables related to
the longitudinal behaviour of the car are excluded. Thus, the optimization variables vector z is
defined as z = [u, z|T = [A, My, §,n, p, vy, w]T.

In order to achieve softer steering commands, the steering derivative (or steering rate) AJ is
used as a control variable, leaving the actual steering § as a state variable. This way, a direct
ponderation over the rate of change of the output command is considered, resulting in less
abrupt changes. Nevertheless, the rate of change of the torque vectoring moment M, is not
considered, as it’s meant to be an additional target moment which will act as a setpoint to the
low level control torque allocation module.

28

[
£y
ETSEIB
The Non Linear Optimization Problem (NLOP) formulation is as follows:
N
miI&i,rililize Z J(ug, xr) (18a)
k=0
subject to
Thy1 = Fiy(ug, o), (18b)
T €EX, up €T, (18C)
gTrack(xk) < O, (18d)
k=0,...,N (18e)

Where N is the prediction horizon and F}(uy, z) represents the integrated vehicle model (17).

3.2.1 Equality Constraints

The vehicle model acts as an equality constraint so each state variable evolves following its dif-
ferential equation. The vehicle model considered for this controller is presented in section 2.3,
excluding the longitudinal behaviour. The control variable AF;,, is removed as well as the state
variables F;, and v,. However, the longitudinal velocity v, must still be taken into account as a
real time parameter (input), which changes along the progress v, (s). The model expression is:

5 AS

n vz () sin oo + vy, cos p

Ll = w — K(s)$ (19)
Uy L(Fy R+ Fyrcosd — mug(s)w)

w i(Fy7FCOS5lF—Fy7RZR+MZ)

This differential equations are integrated using the explicit 4th order Runge-Kutta method (RK4).

3.2.2 Inequality Constraints

The state and control variables domains are represented as x and T respectively. This hard
constraints represent the mechanical and dynamic limits of the car. One of the main advantages
of MPC is that it ensures this limitations won’t be exceeded in any feasible solution, which adds
rebustness to the controller.

On the other hand, in order to restrict the car’s position to the inside of the track, soft constraints
(18d) are added:

n + Lsin(p|) + Weos(u) < Dr(s) (20)
—n + Lsin(u|) + Weos(u) < Dg(s)

Here L and W represent the distances from the car’s CoG to the furthest corner point of the car,
and Dy, r(s) represent the orthogonal distance from the reference trajectory to the left or right
track limits for each progress/point s. Both equations are then reformulated in order to match
with expression (18d). In addition, a slack variable ¢ is introduced because in the event of the

29

.=
fy
KN 4

A
ETSEIB
car exiting the track boundaries, the controller must not lead to an infeasibility but re-enter the

track as soon as possible. The final track constraints are stated as follows:

n + Lsin(p|) + Weos(u) — Dr(s) — ¢ <0 (21)
—n + Lsin(p|) + Weos(u) — Dr(s) — (<0

Adding slack variables to the NLOP increases its computational load because they are treated
as control variables. Here one and only slack variable is added, taking part in both track con-
straints. This can be done because there cannot be a situation where both constraints are active.
E.g., if the car moves towards the left side of the track, the first constraint will be near activation
‘n — DL(s)‘ ~ (while the second one will move away from activation ‘—n — DR(S)‘ < 0. If
there was no such duality between the given constraints, one slack variable per constraint must
have been added.

3.2.3 Cost Function

The cost (or objective) function is the expression that is going to be minimized over the whole
horizon length until a local minimum is found. In another words, the controller’s performance
mostly depends on the terms considered in this function and their ponderation (weights). It is
stated as follows:

J(ug, zp) = —Qs$k + RaAS; + Ra, Mi, + Quit® + Quni + QuiipBa (22)

Where —(Q); is added in order to maximize the progress rate over the given path, the control
softening weights Ry and R)y,, are included in order to penalize abrupt control changes, path
following weights), and @, are included to ensure the controller actually follows the reference
trajectory achieving small values of y and n, and finally,) 4;;, ponderates over the kinematic and
dynamic slip angles difference 3, stated as follows:

Bek = Baynk — Brin,k (23)
Bayn.k = arctan(w)
Vg k
Slg
. — t
Brin,k = arc an(lR e

This last condition is added so aggressive driving has a higher cost than smoother driving ma-
neuvers, where the kinematic and dynamic slip angles usually take similar values. Moreover, as
explained in section 2.2.1, the presented controller must avoid too high slip angle values because
of the existing trade-off in the simplified tire model.

30

3.3 Implementation

All Autonomous Systems, Control and Electronics software implemented on BCN eMotorsport’s
car communicate through ROS Noetic framework. Thus, all the algorithms presented in this
thesis are implemented in C++ and run in a self-assembled Processing Unit with Ubuntu 20.04
GNU x86_64 as the operating system. The PU has an Intel i9 main CPU with 20 cores in order
to execute in real time the complete driverless pipeline.

The implementation of the lateral MPC algorithm in C++ consists on a wrapper module that
circles around the C-generated solver library. The MPC module is in charge of receiving the
real-time data from all the available sensors of the car together with the path planning output
and handle this information in structured arrays to the solver library on run-time. After the
optimization problem is solved, the given solution is read and the optimal commands are pub-
lished to the ROS network for the low level control algorithms to follow the resulting target
commands. This commands are then sent directly to the actuators.

From a software development point of view, several procedures must be considered in order
to close the control loop. Before entering the ROS loop, the MPC object must be initialized,
setting up all the static parameters and the data structures used during run-time. Within the
loop, the car state and path planning output are received from the ROS network via callbacks.
Afterwards, the NLOP variable boundaries together with the real time parameters are set. Then
the MPC initial state feedback, defined as xi;; = [0, n, i, vy, w], is updated. The steering position
d is directly received from the potentiometer whereas the lateral velocity v, and yaw rate w are
received from the state estimation module. The lateral distance n and heading p with respect
to the trajectory must be calculated knowing the actual car’s position [z, y, 0] received from the
SLAM module. After that, the initial guess array must be filled. This array contains the values
from which the solver will start to iterate for each state variable for each stage of the prediction
horizon. This values taken by the solver are of vital importance as they can greatly affect the
solving time, depending on how far they are from the optimal state. That’s why the initial guess
array is filled following the procedure explained in section 3.3.1. Finally, the solver instance is
called, the final command is picked from the solution array and is sent over to the ROS network.

NOTE: a ROS Dynamic Reconfigure instance is added to the MPC module enabling online pa-
rameter tuning, so an extra callback is defined in order to overwrite the real time parameters
values at run-time.

3.3.1 Solver

In order to solve the NLOP problem in real time, a fast and reliable solver is mandatory. Many
state of the art open source and commercial solvers exist. However, Embotech FORCESPRO
solver was chosen for its fast solving capabilities in tailored and highly non-linear MPC formu-
lations as the one presented in section 3.2. The chosen NLOP solving algorithm is the Nonlinear
Primal-Dual Interior-Point method because of its robustness and reliability for most nonlinear
problems.

FORCESPRO provides a MATLAB and/or Python API where the complete optimization prob-
lem formulation must be specified. Afterwards, the code is C-generated in order to be able to
use it in embedded systems unlocking a much faster performance on solving time.

31

http://wiki.ros.org/noetic
https://forces.embotech.com/Documentation/

, 2D

3

)
<t

>
ETSEIB

Moreover, in order to speed up the solver convergence, an heuristic procedure can be followed.
If an optimal solution was found in the last solver call, the initial guess of the optimization
variables for the next call will be this very same solution. Otherwise, the initial guess will be
each boundary midpoint. This strategy stays consistent because due to the high frequency of

the control loop (40Hz), the optimal solution z; will often be found near the already known
2,1 solution.

<
Y

32

3.3.2 Algorithm pseudocode

Algorithm 1 Tailored MPC

1:
2:

p < get_parameters() > Read parameters
mpe < mpe :: mpc(p) > Call mpc constructor
state < ros :: callback_state() > Set up car state callback
: planner < ros :: callback_planner() > Set up planner callback
dyn_recon fig_sub < ros :: callback_dynConf() > Dynamic Reconfigure callback
T < ros :: Rate(p.freq) > Control loop frequency

7: while ros :: ok() do

10:

11:
12:
13:
14:
15:
16:
17:
18:

19:

20:

21:

22:

23:

24

25:
26:

ros :: spinOnce() > Update callbacks with received msgs
ub, Ib <— mpc :: nlop :: get_boundaries() > Set up variables boundaries
20 < mpc :: current_pose(state) > Get current car state
if exit_flag == 1 then
init_guess <— mpc :: last_solution() > Set up initial guess
s <= mpc :: progress_prediction() > Predict progress values
Vg, K < mpc :: progress_sampling(s, planner) > Pick progress dependant values
else
init_guess < mpc :: mid_bounds()
Vg, K — mpc :: equal_sampling(planner)
end if
solution, exit_flag <— mpc :: nlop :: solve(z0, vy, K, init_guess, ub, b, p) > Solver call
commands < mpc :: prepare_msg(solution)
if mpc :: is_finished(p.mission) then > Check if mission is finished
commands < mpc :: safe_stop()
end if
ros :: publish(commands) > Publish target commands
ros :: sleep(r) > End point to ensure control loop frequency
end while

33

3.3.3 Module architecture

The complete MPC diagram is shown here:

real-time [ub, Ib]
/pl /path parameters (boundaries)
planner/pa

ORCESPRO solver

NLOP

Vehicle Model

Target Mtv Low Level

Xinit= [5’1I’ll,Vy,(Dl
(initial state)

[s.k]ixn

Torque allocator

Control module

Cost Function

[xguess]7xN

[X’}’»G’Vx’vy»w, 6] initial guess h Constraints

fedlaifes R Progress prediction =+ =+ =— - -

Steering
Target & Module

Il

Figure 13: Lateral MPC diagram.

3.4 Results

In order to be able to test and tune the Lateral MPC cost function weights, a simulation software
capable of computing precise vehicle dynamics interactions is mandatory. The IPG CarMaker
multibody simulation software is chosen.

CarMaker provides a high-performance, real-time capable physics engine based on C/C++,
with a highly efficient vehicle model. Moreover, a complete parametrization of the given model
is possible, adapting every part of the vehicle to match with the studied one, in this case the
CAT15X. IPG’s software also enables access to the simulation loop via a C++ API, so a real-
time communication between the ROS network and IPG’s physics engine is set in order to close
the simulation loop. The complete AS pipeline can be executed through a ROS instance while
interacting with the simulation physics, evaluating this way the different algorithms reliability
and performance in the same framework in which they will be running in the vehicle’s PU.

To test the controller, the AS online path planning pipeline is executed in order to tune the MPC
while preserving the stability of the complete software stack. Although an initial tuning is made
with a standalone instance of the controller, the final tuning procedure is carried out taking into
account the path planning variability, as it has proved to be of great influence when choosing
the optimal cost function weights. Depending on the number of cones seen by the perception
module, the path planning algorithm can drastically change the output trajectory which could
lead to aggressive steering commands and unstable car behaviours. The presented controller

34

https://ipg-automotive.com

S
oy
\'ld‘ -‘.'.'l
ETSEIB
must be robust to these input changes.

The objective of the following simulation tests is to understand how the cost parameters affect
the car behaviour on track in order to choose the parameters set which achieves the lowest lap
time.

Embotech’s FORCESPRO solver provides an exit flag to every solver call. This way, the exit
status of the solving iterative process can be checked before sending the output solution to the
ROS network. When a local optimal solution is found (i.e. the point satisfies the KKT optimality
conditions to the requested accuracy) the exit flag returned value is 1. If the solver reaches the
maximum number of iterations specified without finding an optimal solution the exit flag is 0.
Finally, if the solver could not proceed due to infeasibility issues the exit flag is -7. Hence, it
is crucial to monitor the solver exit flags to guarantee the acquisition of optimal commands in
every iteration of the controller. Notice that if the maximum number of iterations are reached
during the run, the output commands could also be used because the solving procedure ensures
these will always be inside the given constraints. However, lap time and control smoothness will
be compromised.

The following simulation results have been achieved using Ubuntu 20.04 with an AMD Ryzen
9 CPU, IPG CarMaker v11.0 and ROS Noetic.

An integration step of 0.025s is used for all the following tests, with an horizon length of 40
stages. Thus, a 1.0s prediction horizon is used.

3.4.1 Weight analysis

Cost function weights play a crucial role in optimization problems because they determine the
relative importance or priority assigned to different objectives within the optimization process.

By adjusting the weights assigned to each component of the cost function, preferences and prior-
ities can be defined to focus on more specific goals. Consequently, cost function weights enable
fine-tuning of the optimization process in order to align with the desired trade-offs and objec-
tives of the presented controller.

In practical terms, the appropriate selection of cost function weights can lead to solutions that
better align with real-world requirements, constraints and preferences.

The progress rate maximization term Qs ensures minimal curvature traces, linking together L,
n and v, state variables. Note that due to the lateral feature of this controller, the v, is set to
be a constant value for each stage of the NLOP and can not be iterated by the solver. In order
to maximize the progress rate expression in (5) v, and u should be minimized. However, the
lateral deviation n should be maximized, which goes against intuition. In fact, this condition is
what actually causes approximate minimal curvature traces where the car tends to cut in cor-
ners, resulting in racing alike paths although higher lateral deviation distances are achieved in
curves. In Figure 14 this correlation between the lateral deviation and the trajectory’s curvature
is shown. Higher values of curvature enable higher values of lateral deviation, translating into
a racing driving style.

35

Lateral deviation vs Curvature

O Data
Linear Regression
. 05
E
c
RS
©
S
(0}
©
©
2 0r
©
_05 1 1 1 1 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

curvature [m i |

Figure 14: Lateral distance vs Curvature correlation.

The lateral deviation weight (),, penalizes high lateral distances to the reference trajectory to
ensure the controller actually follows the reference path. As shown in Figure 15 higher values
of @), reduce the lateral deviation, ensuring a better path following behaviour. Because of the
progress rate maximization term explained above, smaller values of lateral deviation do not
certainly mean better performance. The existing trade off between low deviation errors and the
corner tracing behaviour must be considered. This decision is greatly influenced by the path
planning algorithm being used. If the input trajectory is set to be close to the midline path of the
track, the curve tracing behaviour of the controller may be prioritized. However, if the received

path is already tracing in curves, seeking small deviation errors may be the right choice.

36

ETSEIB
Lateral deviation
15 T T T T T T T T
Qn=1.0
Qn=50.0
Qn=150.0
1 Qn=550.0

Distance [m]

-0.5

_1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800
iteration

Figure 15: Lateral distance comparison.

The torque vectoring extra moment weight @)y, lets the controller use an additional moment
around the z axis hugely affecting the vehicle dynamics in curves. This extra moment is then
used as a setpoint by the Torque Allocation module, coupling this way the high level lateral con-
troller here presented with the low level control pipeline of BCN eMotorsport vehicle. In Figure
16 the target extra moment is shown for different tuning weights. For really small weight val-
ues, the controller starts using higher values of this additional moment improving its cornering
performance.

37

"'Jx'a"’
ETSEIB
Extra Mz
800 T T T T T
dMtv=1e-2
600 dMtv=1e-3 |
dMtv=1e-4
dMtv=1e-5
400

200 f;
E‘ O A A A AA .
Z j \e~rd
g “/
g -200
(@]
=
-400 + .
-600 .
-800 .
_1000 1 1 1 1 1
200 400 600 800 1000
iteration

Figure 16: Torque Vectoring additional moment setpoints.

The steering rate softening weight R; is meant to penalize abrupt steering changes, parame-
terizing this way the maximum rate of change accepted by the actuators. Figure 17 shows that
for higher costs the steering rate stays low, which translates to more stable steering commands
in Figure 18. Nevertheless, really high values of this weight could penalize the controller re-
sponsiveness in really tight turns.

Rate of steering commands Steering commands

2 ; 03 ‘
dRd=1.0 dRd=1.0
dRd=50.0 02 | . dRd=50.0
15 dRd=100.0 ' \ dRd=100.0
dRd=200.0 dRd=200.0

Steering rate [rad]
Steering [rad]

0 200 400 600 800 1000 0 200 400 600 800 1000

iteration iteration

Figure 17: Steering rate comparison. Figure 18: Steering commands comparison.

38

3.4.2 Performance

Within this section a fraction of the simulation performance of the Lateral MPC is presented
with the results obtained from an autocross run in two distinctive FS tracks: Formula Student
Germany (FSG 2019) competition and Formula Student Spain (FSS 2019) competition.

In order to be consistent with the existing limitations on the real vehicle, the presented test
runs have been performed without executing the Torque Vectoring software and using only
both rear driving wheels. Nevertheless, the low level control pipeline from BCN eMotorsport
is executed, so Traction Control and Regenerative Braking modules are present. In addition, as
mentioned in section 3.4 the team’s Track Limits detection and online Path Planning modules
are also running.

Regarding the FS Spain test run, in Figure 19 is clearly visible that the controller is able to keep
the car’s yaw rate within the predicted values, with the output steering commands shown in
Figure 21. The actual lateral velocity of the car also fits its target predicted values in Figure 20,
although a small miss match is present. This variation in lateral velocity can be explained by
its high sensitivity towards vehicle model changes. Due to the acknowledged (and contrasted)
superior accuracy of the simulation model compared to the dynamic bicycle model stated in 2,
Figure 20 highlights the limitations of the employed prediction model.

Target vs Actual Yaw Rate Target vs Actual Vy

1.5

T 1.5

Actual
Target

Actual
Target

w [rad/s]
vy [m/s]

\ ’)ﬁ

0 5 10 15 20 25 30 0 5 10 15 20 25 30
time [s] time [s]

Figure 19: FSS Actual vs Target yaw rate. Figure 20: FSS Actual vs Target lateral velocity.

39

0.3

Target vs Actual Steering

02 -

steering [rad]

Actual
Target

time [s]

Figure 21: FSS Actual vs Target steering angle.

The same conclusions are extracted from the FS Germany test run, which can be seen in Figures

22,23 and 24.
15 Target vs Actual Yaw Rate
A Actual
| || Target
L |
L '
| Wi
\ \f
0.5 | LA il
w or \ ‘M | "‘\“\.l‘ T “mm\“
3 | ' l\ {f
> -05 |- f ' i ! ‘|h_ .

time [s]

30

Figure 22: FSG Actual vs Target yaw rate.

05 "

vy [m/s]

Target vs Actual Vy

Actual
Target

Figure 23:
ity.

15 20

time [s]

25

30

FSG Actual vs Target lateral veloc-

40

03 Target vs Actual Steering

steering [rad]

10 15 20 25 30 35 40
time [s]

45 50

Figure 24: FSG Actual vs Target steering angle.

Another important aspect of any test run are the number of optimal solutions found. If the solver
reaches the maximum number of iterations for a long period (typically more than 4 iterations)
the quality of the output commands can highly decrease, loosing steering movement continuity
and potentially destabilizing the vehicle. A great example is shown in Figure 21, where near
the first five seconds of the run the controller outputs an outlier steering command due to 6
consecutive maximum iterations exit flags, shown in Figure 25. The exit flags for the complete
FSS and FSG runs are shown in Figure 25, with a 0.53% and 0.0% of maximum iterations reached

respectively.

Convergence Flags
1200 1500

1107

1000
800 r 1000

600

solve calls
solve calls

400 500 r

200 r

Convergence Flags
1405

0

(a) FSS

Figure 25: Exit flags bar plot.

0 1

(b) FSG

41

oo

s

®

Vo t”

ETSEIB
Finally, the solving time for each test run is shown in Figure 26. Notice that although some
modules of the AS pipeline together with the low level control complete pipeline are being
executed during the simulation, the greatest computational burden in the car comes from the
AS Perception pipeline, which processes big quantities of LIDAR point clouds in real time; and
it’s not present in the simulation. This computational load must be taken into consideration
when analyzing the controller’s solving time, as it probably will be much higher when executed
in the onboard PU. Both solving time means are found near 3 ms, with maximums of 16 and
18 ms. It’s clear that the Lateral MPC loop can be safely executed at 40 Hz, complying with the

control specifications defined in section 1.5.1.

[24¢

. Solve Time } Solve Time
wb T T
14 | .
16 +
127 T 14,
— 10 ¢ 7'_‘12*
£ g
2 g 78107
‘q‘)‘ =
‘ l | | IHAT A | ‘
1l I 'l ML A i AR RO« RARLL L L [
2 ' I [| N ‘ L kautimtihe | ‘l\“\““l” ‘w‘w‘”\ n\‘!'lmvm”l "||‘\ 1l U”
ob_-— -
0 5 10 15 20 25
time [s] time [s]
(a) FSS (b) FSG

Figure 26: Lateral MPC solve time.

42

Y
Gy
ETSEIB
4 Cruise Controller

4.1 Concept

Cruise control is a technology commonly found in automobiles that allows drivers to maintain a
consistent speed while driving on highways or open roads. It works by automatically adjusting
the throttle or engine power to keep the vehicle moving at a set speed, which the driver selects
and activates. Nonetheless, within the context of this thesis, the term "cruise control” will be
employed to describe the longitudinal controller’s function of adjusting the throttle to follow a
specified velocity profile, as opposed to maintaining a constant speed.

In order to accomplish this objective, the selected controller is a PID controller. PID controllers,
short for Proportional-Integral-Derivative controllers, enjoy extensive usage in control systems
across diverse industrial sectors due to their effectiveness in overseeing and governing pro-
cesses and systems. Within the context of this thesis, their most relevant advantages include
their ability to swiftly respond to changes, adapt to various conditions, and maintain system
stability. These attributes align closely with the prerequisites outlined in section 1.6.1, making
the PID controller an ideal choice for the task at hand. Furthermore, considering the constraints
of limited testing time and the inherent reliability challenges associated with Formula Student
prototypes, the use of a straightforward controller that relies on a minimal set of adjustable
parameters for optimal tuning is prioritized.

Here, an Adaptive Cruise Controller is presented in order to control the longitudinal behaviour
of this year’s BCN eMotorsport car.

4.2 Velocity Profile Calculation

In order to compute the velocity profile for each new path found by the path planning module
in real time, a parametrized GG diagram approach is used.

The GG diagram is a commonly used plot in vehicle dynamics to understand and improve ve-
hicle performance. The x-axis represents lateral acceleration values while the y-axis usually
represents longitudinal acceleration, all expressed in units of "g". This plot is a valuable tool to
asses tire performance, optimize vehicle handling and often make design decisions related to

tire and suspension systems.

The parametrized GG diagram expression is stated as follows:

(

Qg)2 i (Ay

Ay mazx Gy maz

)? <1 (24)

Therefore, this dynamic equation transforms into a pair of semi-ellipse equations, where the
inner region defines the operational work zone, and the outer region is the area where slipping
or reaching the limit is not advisable. To push the car to its performance limits, the focus must
be set on the limit zone, incorporating a safety margin to ensure safe operation.

The maximum lateral acceleration of the car is previously set and remains constant during the
run while the maximum longitudinal and braking accelerations are dynamically adjusted taking
into account the Low Level Control positive and negative torque limitations. This way, the cruise
controller is always following a velocity profile that stays consistent with the maximum torque
capabilities of the car.

43

ETSEIB

In order to calculate the velocity profile tracing the given ellipse-shaped constraint a two-step
procedure must be followed.

A previous approximation of the velocity profile is calculated assuming that the car stays in
pure cornering behaviour for the whole reference trajectory. This assumption states that the
vehicle is always under maximum lateral acceleration, so:

. a
Vcornering,i = Min(% s Umaz) (25)
(]

Where i € [0, size(path)), the given curvature at trajectory point i is represented as x; and v,z
is included for safety reasons.

Afterwards, the velocity profile is computed taking into account the longitudinal acceleration
and braking capabilities of the single-seater. Firstly, a forward calculation is done taking into
consideration the maximum longitudinal acceleration followed by a backwards calculation tak-
ing into account the maximum braking acceleration. Finally, the minimum velocity for each
trajectory point is picked. The procedure is as follows:

Accelerating: i € [0, size(path))

Qyi = minqﬁi‘ vgccel,i? ay,max) (26)
o
Ay i = Qg accel,max 1- (L)Z (27)
Gy mazx
Vaccel i+1 = \/2a$,iA8 + Ugccel,i (28)
Braking: j € (size(path), 0]
Ayj = min(| ’ij‘ vl%rake,j’ Ay, maz) (29)
s
Oz, = Qg brake,max 1- (i)2 (30)
Gy mazx
Vbrake,j+1 = \/Qal‘,jAS + vl?rake,j (31)
Final velocity profile:
Ufinal,i = min(vcornem’ng,ia Vaccel,is Ubrake,i) (32)

Note that because this is an online (on run-time) approach, the first velocity vy is set to match
with the current velocity of the vehicle.

To generate a velocity profile for the entire track rather than a partial profile, it is necessary to
replace the initial velocity condition with a periodic one. It is crucial to initiate the profile from
a curvature apex, as these points represent local maxima, and their velocity is already known
to be veornering. This ensures the final velocity profile is the highest possible. Thus, the selected
apex will define the point where the first and last velocities match.

44

"'Jx'a"’
ETSEIB
Velocity Profile
18 T T T T T T T T T
Braking
16 | A.ccelerating i
Final
14 .
12 + .
@
g 10 .
x
S
8 a
6 -
4+ 4
1 1 1 1 1 1 1 1 1

2
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
index

Figure 27: Closed velocity profile of FSS track.

The velocity profile shown in Figure 27 was computed taking into account the following restric-
tions: ag qecel,maz = 4.0m/s and ay maz = Az prake,maz = 6.0m/s.

4.3 PID Formulation

The PID controller uses three components to adjust the control output based on the error, which
is the difference between the desired setpoint and the actual process variable, in this case the
target velocity previously calculated as stated in section 4.2 and the current velocity of the ve-
hicle:

e Proportional (P): The proportional term is directly proportional to the current error. It
multiplies the error by a constant (the proportional gain, often denoted as K),) and pro-
vides an immediate response to changes in the error. A larger K, value leads to a stronger
and faster response but may introduce oscillations if it’s too high.

e Integral (I): The integral term accumulates the error over time and is designed to elimi-
nate any steady-state error. It multiplies the integral of the error by a constant (the integral
gain, often denoted as Kj;). It is effective in eliminating long-term error, but too high a K;
value can cause instability and slow response.

e Derivative (D): The derivative term is proportional to the rate of change of the error. It
multiplies the derivative of the error by a constant (the derivative gain, often denoted as
Kg). The derivative term provides damping and helps to reduce overshoot and oscilla-
tions. However, a high K, value can lead to excessive noise amplification.

45

D
fy
\'Id‘ -‘.'.'l
ETSEIB
43.1 Anti-windup

An anti-windup strategy is also added to the cruise controller. Anti-windup is a technique
used in PID controllers to prevent or mitigate the issue of integral windup. Integral windup
occurs when the integral term of the PID controller accumulates a large error over time due to
the controller being saturated, i.e., when the control output is limited by physical constraints
or saturation limits of the system being controlled. In this use case, the controller’s output
(or throttle) is comprised between [—1, 1] where -1 represents maximum braking (maximum
negative torque) and +1 represents maximum acceleration (maximum positive torque). This
command is later sent over to the Low Level Control module, which is responsible to linearly
transform this value to a final torque command. In order to see the anti-windup’s architecture,
see Figure 28.

4.3.2 Adaptive PID

For security reasons, it is common that the maximum longitudinal acceleration set in the GG
diagram is lower than the actual maximum acceleration capabilities derived from the maximum
torque available. In order to be consistent with this situation, the PID’s proportional gain K, is
linearly ajusted as follows:
a
Ky, finat = Kp(—%) (33)
Gz max

Where K, stands for the initial gain value, a, 4, represents the GG diagram’s maximum longi-
tudinal acceleration taken into account when computing the velocity profile and ag 4. is the
actual maximum acceleration derived from the torque limitations of the car.

44 Implementation

The cruise control module, developed in C++, is designed to function by receiving the desired
longitudinal velocity from the path planning module and the actual velocity of the vehicle from
the state estimation module. Afterwards, it calculates the current error and employs the PID
logic to derive the final throttle command. Additionally, the module keeps track of the motor
torque limitation, representing the maximum achievable torque. To adapt the proportional gain
K,, the linear adjustment (33) is made after converting the maximum torque at the motor axis
to the maximum available longitudinal acceleration of the car. Finally, the throttle command
is sent to the Low Level Control module, which linearly transforms it to torque commands for
each driven wheel.

46

Jtorque/limitation — trq t0 @, —mt Update Kp

Throttle commands
(+40 Hz)

Target Vx oy Low Level

Control module

Final torque
commands

I_‘F L IﬂFRv I_‘RL’ I_‘RR

/planner/path

40Hz

/odom/velocity | Current Vx
200Hz

Figure 28: Cruise Controller diagram.

4.5 Results

In order to evaluate the Cruise Controller performance in a simulation environment, the same
tracks as in section 3.4 will be used. Furthermore, the same simulation conditions as the ones
presented in section 3.4 apply throughout all this section as well as the same modules are exe-
cuted during the runs.

In Figure 29 the accumulated target velocity setpoints over time are shown together with the
actual car’s longitudinal velocity. Focusing now on the FSS run, the accumulated target profile
shows aggressive changes in the velocity setpoint near the five seconds timeline. This behaviour
is due to the unsteady path planning trajectory, which radically changes two times in a row be-
cause of track limits corrections. In other words, as more cones are being detected, the track
limits module updates its estimation of the drivable path which triggers a path planning trajec-
tory recalculation. This behaviour is usually seen at the start of the run because of the limited
number of detected cones, which leads to a wrong track limits detection, quickly fixed as the
car starts moving. In contrast, in the FSG test run this behaviour is not seen, as the corrections
are made over the final points of the trajectory, not changing it completely. Following the com-
pletion of the FSG autocross run, the braking curve after crossing the finish line can be seen.

47

Target vs Actual Vx

vx [m/s]
vx [m/s]

.2 L Il L Il L o L L L L
0 5 10 15 20 25 30 15 20 25 30

time [s] time [s]

(a) FSS (b) FSG

Figure 29: Actual vs Target longitudinal velocity.

In order to fulfill the longitudinal control specifications defined in section 1.5.1 the throttle com-
mands must be smooth enough not to damage the hardware. In Figure 30 the output commands
of the Cruise Controller are shown for FSS test run.

1 Throttle Commands

0.6 .

0.4

throttle [-]

_1 ﬁ A 1 1 1 1 1
0 5 10 15 20 25 30
time [s]

Figure 30: FSS throttle commands.

48

4.5.1 Velocity profile verification

The velocity profile calculation presented in section 4.2 has been verified through different runs,
iterating over different longitudinal and lateral maximum accelerations. Afterwards, the GG
plot is used to confirm the vehicle isn't surpassing the limitations imposed. Ensuring that the
vehicle actually complies with the acceleration ellipse constraint also proves the performance
of the Cruise Controller in keeping a small velocity following error. Figure 31 shows that the
maximum lateral and longitudinal acceleration values from each run tend to follow the given
limitations. However, the lateral acceleration maximum values overpass at some points its limit.
This behavior is expected, given its inherent correlation with the lateral controller’s performance
and the dynamics of the tires.

GG plot
T T T T T T T T T
15 " + ax=2.0ay=3.0 a
* ax=4.0 ay=6.0
o ax=6.0 ay=9.0
10 + o o soy + ax=10.0 ay=16.0 J
i
cos
5¢F .&.';: '.-.. T
[N) ."
R
é 0 L !.~- -
x s
© o
_5 k o :: . A
¥ o .: . e
't‘-
10 F J
15 |+ J

-25 -20 -15 -10 -5 0 5 10 15 20 25
ay [m/s?]

Figure 31: FSS track GG diagram (in SI units).

49

The lap time achieved with every set of acceleration limits is shown in Figure 32.

50

45

40

Lap Time

45.4972

26.3207

1 2 3 4

Figure 32: Lap time in FSS track.

50

o
Yy
ETSEIB
5 Trajectory Optimization

5.1 Concept

Path planning is a critical aspect of every autonomous systems pipeline. It involves calculating a
safe and optimal route for the vehicle to travel from its current location to a desired destination.
This process relies on various components, including perception, localization, map representa-
tion, route planning, trajectory generation, collision avoidance, decision-making, optimization,
and continuous real-time updates.

Path planning in autonomous vehicles is a complex and computationally intensive task that
usually combines machine learning, sensor data processing, and control systems. Its success is
essential for the safe and efficient operation of autonomous vehicles, enabling them to navigate
urban and highway environments, adhere to traffic regulations, and avoid accidents.

Formula Student tracks are always delimited by cones (see the rules stated in [18]) and there
can’t be any dynamic objects inside the track, so collision avoidance is not taken into account
in this thesis. For this reason, the most commonly found approaches in FS competitions make
use of geometrical relationships and hardly ever take any vehicle dynamics restrictions into
consideration.

In the context of this project, the task of the path planning module involves calculating the refer-
ence path that the vehicle will follow. This path is computed considering the track boundaries
identified by the perception stack but also taking into account the vehicle model outlined in
section 2.3.

To clarify, the path planning algorithm detailed in this thesis is designed as an offline strategy,
needing prior knowledge of the entire track. This approach is adopted in order to start the
Trackdrive event with a pre-computed, optimal trajectory.

The trajectory optimization presented in this section is based on a one-time prediction of the
optimal state of the car at each point of the track. The final trajectory will be derived from the
NLOP solution and the reference/input path.

5.2 Pre-processing

Before starting the optimization problem procedure, a previous trajectory candidate is needed.
Given the cones that define the left and right track limits a pre-processing algorithm is defined
in order to compute an approximation of the midline path. These midpoints are actually gates
midpoints, defining a gate as the straight line that crosses a pair of points each one belonging
to one track limit.

In order to compute such gates, the shorter track limit is chosen as reference and, from that,
straight lines perpendicular to the tangent of this reference are obtained. Where this perpendic-
ular straight lines (a.k.a gates) intersect the other track limit, new points are created. Repeating
this procedure for the whole reference cones, gates for the whole track are defined.

51

B

g

m St
(/2]

m &3
@ Pecet

reference

Figure 33: Gate generation diagram.

As shown in Figure 33, the main idea of the presented algorithm is to iterate over the whole ref-
erence cone positions P;. Knowing the previous and next cones O; = P,_; and Q; = P;4 from
the reference track limit, the angle bisector is calculated in order to obtain the perpendicular
gate direction. The gate endpoint R; will be the point where it crosses the other track limit. To
find point R; coordinates, the following vectors are defined:

PO P(
m=—-:+ #Q = (Mg, my) (34)
‘ PO HPQ
AB = (aby, aby) (35)

From this, the straight line ¢ and the actual gate g are obtained:

ab ab

t:y:a—éfv—kay—ﬁaz (36)
m m

g:y=—"Lr+p,——p, (37)
My My

Where P = (p;, p,) and A = (a,,a,). The new point R = (R, R,) is found where ¢ and g cross:

My aby

Ay — Py + ma P~ ap, Gy
my aby Y
m m
Ry = t(RfE) = g(Rﬂc) = #Rx +py — miypm (39)

52

o
Yy
ETSEIB
Once each P; and R; are found for each gate g;, the midline points are computed:
P+ R;
Mp =2 ; i (40)

Keep in mind that a previous spline interpolation of both track limits could be made, so the
procedure defined above doesn’t necessarily have to be applied to cone positions but a better
discretization of the reference track limits can be achieved, leading to more gates and a better
defined midline trajectory.

Afterwards, the midline points are interpolated via C? parametric splines so a smaller and uni-
form discretization (0.025m) is achieved. With this parametric representation, the midline is
defined as v(t) = (z(t),y(t)) and the curvature at each point is computed:

2 ()Y (1) — v (£)a" (t)
(/1) + 3/ (1)?2)2

k(t) =

(41)

NOTE: For the C++ implementation of this pre-processing, the most critical operation is to find
the closest two points on the other track limits to point P. In order to perform this operation in an
efficient way, a KD-tree structure is defined with the discretized points from the non-reference
track limit. This way, a fast nearest neighbors search can be made iteratively, returning both
nearest points A and B for each P.

A KD-tree is a data structure for organizing points in a k-dimensional space. It recursively par-
titions the space along different dimensions, creating a hierarchical tree structure. This allows
for efficient multidimensional searches, such as finding nearest neighbors. The tree is built
by selecting dimensions, splitting the space based on median values, and repeating the pro-
cess recursively. KD-trees are commonly used in computer science for faster multidimensional
searches.

5.3 Non Linear Optimization Problem Formulation

The motion planning NLOP diverges from the one stated in section 3.2 so that it takes into
account the complete vehicle model defined in section 2.3. Here, not only the lateral behaviour
but also the longitudinal behaviour of the car are considered. Thus, a new inequality constraint
can be added so the predicted states remain within a friction ellipse. Because the tire model
explained in section 2.2.1 does not consider combined slip, this new constraint will prevent the
high level layer from demanding unrealistic accelerations. In this case, the resultant trajectory
will never request too high accelerations.

The state vector z is defined as = = [§, Fy,, 1, 1, Uz, Uy, w]” and the control vector u is defined as
u = [A§, AF,,, My,]T. Note that the s-state is decoupled as explained in 2.3. Thus, the optimiza-
tion variables vector z is defined as z = [u, |7 = [AS, AF,,, My, 6, Fyyn1y i, g, vy, w7

53

At
{Ty
ETSEIB
The NLOP description is as follows:
N
mu&l,r%lze kzo J(ug, xr) (42a)
subject to
Thy1 = Fs(ug, Tk), (42b)
TN = Tp, (42¢)
TE € X, up €T, (42d)
9rrack(zr) <0, (42e)
9Eipse(Tr) < 0, (42f)
k=0,....N (42¢)

Where N is the total length of the input trajectory discretized by As, F(uy, x)) represents the
integrated space dependant vehicle model defined in section 5.3.1, ggyjipse (21) is the new friction
ellipse constraint and zy = z represents a cyclic constraint so the prediction for the last and
first states match.

5.3.1 Spatial Transform

The model presented in section 2.3 is expressed as a system of continuous time ODEs. For
trajectory optimization purposes this model is transformed into the spatial domain with the
progress s as the running variable instead of time ¢. This way, the predicted states will evolve
with respect to space, so every new trajectory point can be computed for each As of the midline
(input) path.

This transformation can be achieved as follows:

Or Ox0s
YT 0t T 9s ot (43)
oxr 1
e < fe(u(s),z(s)) = fs(u(s), z(s)) (44)
s 8
The final model used is:
[5] [AS |
F,, AFy,
n 1 Vg SIn p1 + vy COS 1
Lo = 3 w — K(8)$ (45)
Uy L(F, — Fypsiné + moyw)
Uy %(Fy,R + Fy p cosd — mugw)
w i(F%FCOSélF—F%RlR-FMZ)

It’s worth pointing out that the time-to-space transformation remarkably increases the compu-
tation load of the NLOP as the complexity of the model increases. However, because this motion
planning solution is thought to run offline it is not a major concern.

54

LI
oy
\'IJ ".'Q'z
ETSEIB
5.3.2 Cost Function

The objective function for trajectory optimization purposes differs from the one presented in
section 3.2.3 in that it doesn’t account for the path following weights @),, and Q. Because the
optimal trajectory is obtained as a consequence of solving the NLOP, lateral deviation n and
path heading 1 states must be freely defined by maximizing the progress rate 5. Output com-
mands weights are added so that realistic steering and throttle profiles can be achieved. Finally,
the slip cost weight is left unchanged.

J(ug, xr) = —Qs$k + RaAS; + Rag,, M7y, + QuipBay, (46)

5.3.3 Periodic Constraint

The newly introduced equality constraint in equation (42c) holds particular significance by en-
suring alignment between the predicted states for the final state N and the prediction for the
initial state 0. This terminal consideration eliminates the degree of freedom associated with
the vehicle’s starting pose. By enforcing this periodic behavior, the output states become inde-
pendent of the initial state. Consequently, identical optimal states are computed for each track,
regardless of the initial conditions. Furthermore, it guarantees the absence of any discontinuity
between the final and initial states, being consistent with the motion planning objective defined
in section 1.4: running the Trackdrive event, consisting of 10 laps.

5.3.4 Inequality Constraints

The track limits inequality constraint is defined identical as in section 3.2.2 so it won't be speci-
fied here.

As said before, the ellipse of forces inequality constraint prevents the motion planning module
from demanding unrealistic accelerations, complying with an ellipse-shaped constraint stated
as follows:

paFi + FyQ,F/R <)‘DJQ'«“/R (47)

Where p, defines the shape of the ellipse and A determines the maximum combined force.

55

Fx [N]

""-fx'o;"’
ETSEIB
Ellipse of forces
2500 . ‘ .
Rear
2000 | Front| -
1500 | 1
1000 | 1
500 8
0 L 4
-500 8
-1000 8
-1500 1
-2000 1
_2500 L 1 L L 1
-2000 -1000 0 1000 2000

Fy [N]

Figure 34: Ellipse of forces constraint.

However, this formulation is not very intuitive when it comes to tuning. Because of that, a
reformulation of the forces ellipse can be made to obtain a GG diagram instead:

Ax [g]

F F,
T 2+(y,F'/R)2§1 (48)
mag max may max

Ellipse of forces
1.5 T T T T T T

Rear
Front

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Ay [g]

Figure 35: GG plot constraint.

56

D
)
Yo
ETSEIB
With this formulation, the forces ellipse constraint ensures the predicted optimal states won't

exceed the dynamic limitations of the car limiting the maximum longitudinal and lateral accel-
eration, which are set as constant parameters for the complete run.

54 Implementation

The motion planning module is implemented in C++. The software is divided into three dif-
ferent submodules or executables: pre-processing, optimization and planning, with the latter
being the only module thought to run online, publishing the partial trajectory into the ROS net-
work. The other two modules must be executed before the run takes place, saving their results
in local memory.

The pre-processing module is in charge of computing the logic defined in section 5.2 and saving
the fully discretized midline trajectory in local memory. Afterwards, the optimization module
should be executed. This executable is in charge of setting up the NLOP and solving it taking
as input the curvature values from the midline trajectory. The predicted states and control vari-
ables are then saved in local memory. Finally, the planning module should be executed together
with the rest of the AS pipeline. This module is in charge of loading the NLOP solution and
computing the optimal trajectory. Knowing the optimal 1« and n states for each point of the mid-
line path, the new trajectory points are obtained. The computed trajectory is then published into
the ROS network so the Lateral MPC follows it.

The motion planning approach here presented does not only output the new trajectory points
but also the optimal values for each state variable taken into account in the NLOP, which are
x = [6, Fyy,m, p, vz, vy, w]T. This way, an optimal velocity profile is also obtained from each v,
solution. Moreover, v, and w values for each trajectory point may be used as upper boundaries
for the Lateral MPC in order to ensure the controller is taking into account the optimal motion,
using the motion planning solution as a long term guidance.

5.4.1 Solver

In contrast to the Lateral MPC presented in section 3, the solver chosen for solving the NLOP
defined above is Ipopt, included within the algorithmic differentiation software CasADi. This
open-source software tool was chosen instead of Embotech’s FORCESPRO mentioned in section
3.3.1 because of it’s customization and flexibility capabilities. Due to the significantly tailored
path planning solution here presented, CasADi’s software together with Ipopt solver offered a
much greater adaptability although inferior solve time performance could be expected. Because
of the offline architecture of the algorithm, higher solve times are not a big concern. Ipopt solver,
short for Interior Point Optimizer, implements an interior point line search filter method that
aims to find a local solution of the NLOP. The mathematical details of the algorithm can be
found in several publications (e.g. [19] and [20]).

57

https://coin-or.github.io/Ipopt/
https://web.casadi.org/docs/

B

g

m St
(/2]

m &3
@ Pecet

5.5 Results

In order to tune the offline path planning approach presented in this section, a similar procedure
as in Lateral MPC'’s 3.4 section has been followed because of the analogous vehicle model used
in both algorithms. A discretization of 0.5 meters is used for all the presented results.

The final parameters set used for both tracks can be found in appendix B.

The progress rate maximization term (), now becomes more sensitive because the v, variable
is one of the state variables of the NLOP, meaning for higher @, higher longitudinal velocities
will be achieved. As explained in section 3.4.1, progress rate maximization causes approximate
minimal curvature paths with racing alike final trajectories. Thus, the progress rate weight
becomes the most sensitive tuning parameter of this path planning algorithm, as it directly
defines the degree of tracing of the optimal trajectory. In consequence, the curve tracing is
tightly coupled with the longitudinal velocity profile. For greater curve tracing, higher velocities
for the whole track.

In Figures 36 and 37 the final trajectory is shown for both simulation tracks presented previously.
The blue path represents the midline trajectory obtained following the pre-processing explained
in section 5.2. The black path represents the final optimal trajectory after the NLOP has been
solved.

10 T .

Final Trajectory

Midline
Optimal
(@) Starting point
Yellow cones
Blue cones -

-10 +

-50 1 1 1 1 1 1
-10 0 10 20 30 40 50 60

X [m]

Figure 36: FSS Midline vs Optimal trajectory.

58

B

g

m St
(/2]

m &3
@ Pecet

10 Final Trajectory

Midline
Optimal
O Starting point -
Yellow cones
Blue cones

-80]]]]]
-20 0 20 40 60

X [m]

Figure 37: FSG Midline vs Optimal trajectory.

Although this algorithm is thought to run offline, some conclusions can be extracted from its
solving time. Because of the spatial discretatization presented in section 5.3.1 the NLOP’s solv-
ing time directly depends on the total length of the track. For longer tracks, more midpoints will
have to be evaluated so the horizon length of the total prediction will be higher. For FSS track
the solving time is 11.47 seconds and for FSG track is 20.09 seconds. FSS track is 240 meters long
while FSG track is 320 meters long.

Finally, the main advantage of this trajectory optimization algorithm is that it does not output an
optimal trajectory but it is extrapolated from the optimal states. The NLOP solution comprises
optimal values for the state vector z = [0, Fy,, 1, 11, Uz, Uy, W] T for each stage of the horizon length,
in this case the length of the track. Thus, apart from the final trajectory computed with n and
(o states, odometry profiles also arise from the solution. In Figures 38, 39 and 40 the odometry
profiles for FSS and FSG tracks are shown.

59

@
E
x
>
7 , , , , 8 , , , , , ,
0 50 100 150 200 250 0 50 100 150 200 250 300
Progress S [m] Progress S [m]
(a) FSS (b) FSG

Figure 38: Longitudinal velocity profile.

Vy [m/s]
Vy [m/s]

2 2
0 50 100 150 200 250 0 50 100 150 200 250 300
Progress S [m] Progress S [m]
(a) FSS (b) FSG

Figure 39: Lateral velocity profile.

60

Yo
ETSEIB
Yaw Rate Yaw Rate
15 ‘ 15 ‘
1t / 1 1 /M
/‘ J//\A “/ “ / //\J “q |
0.5 / ‘\ “/ | / ‘\ 1 05+ / s“ N‘ “‘\
| ‘ [| H ‘ ‘ \‘ [
I | | | | “w“\ f\ z | H M‘ |
g ‘ ‘ I M 1 8 M | \
s || \ | AR L
i RN | ot
ost | i \ \\ S esy | I | i]
|| \ ‘ \ Vo | “‘\ [u \\‘ U \ \ ‘ I
A NN | | - | | Y
-1 F \\ \ \ ‘, -1k “\/l 4
\J \\/ e
e 0 56 160 15';0 200 250) 50 100 150 200 250 300
Progress S [m] Progress S [m]
(a) FSS (b) FSG

Figure 40: Yaw rate profile.

Compared to the "kinematic" velocity profile calculation defined in section 4.2, smoother pro-
files are achieved with less dependency on curvature’s variability. Calculating curvature for
splines presents multiple challenges, which include numerical instability, potential parameter-
ization issues, sensitivity to the choice of basis functions or complexities in handling closed
splines. As a consequence, it is common to compute curvature profiles with inherent noise that
may not accurately represent the reality. Thus, the velocity profile in Figure 27 greatly differs the
one presented in Figure 38, the former being much less steady than the latter due to curvature’s

distortion.

Thanks to the periodic constraint presented in (42c), every profile starts and finishes with the
same exact value, enabling this way a loop closure without any discontinuities.

61

6 Overall Testing Results

At last, the testing performance of the Lateral MPC together with the Cruise Controller is pre-
sented. The results are divided into the data collected in an autocross and a trackdrive run, both
conducted in Parc del Forum, Barcelona. Different tracks are chosen for each one of the events.
In Figure 41 the 145 meters long autocross track is shown as well as the trackdrive track, with
an overall distance of 171 meters.

The complete trackdrive run can be found in the following video: How the Autonomous Pipeline
of a Formula Student Car Works - BCN eMotorsport.

Autocross testing track

s

o © o
0o 0o o o ©° ©° °©
or ° oo 1 or

o 00 0 00 ©o0 00 000

y [m]
y [m]
o

20 +

25 L

-30 +

-35

-20 +

25 -

-30 +

x [m]

-35

-20 -10

x [m]

20 30

40

(a) Autocross (b) Trackdrive

Figure 41: Testing tracks.

The parameters used for both tests are summarized in appendix A.

6.1 Solve time

In Figure 42 the computing times of the Lateral MPC for both runs are presented. Although the
solving time is higher compared to simulation performance, the controller can keep up with its
40 Hz main loop without major problems. The solve time mean of the autocross run is 5.74 ms
and 4.43 ms is the solve time mean for all 10 laps of the trackdrive event. During the autocross
run peak values of 40 ms can be found while some peaks over 60 ms are found in the trackdrive
event.

62

https://maps.app.goo.gl/Mk5ibM3WcSKnojuk9
https://youtu.be/mk9U0lRWr-0?si=7hWqmMftI2bhq4mA
https://youtu.be/mk9U0lRWr-0?si=7hWqmMftI2bhq4mA

30

25

20

solve time [ms]

6.2

Solve Time

Solve Time
-

90 B

80 1

70 - 1

40 1

solve time [ms]

30 1

20 1

L (= i — | - i i it

10
time [s]

(a) Autocross

Exit flags

100 150
time [s]

(b) Trackdrive

Figure 42: Solve time.

The percentage of maximum number of iterations reached with respect to the total number of
solver calls for the autocross run is of 6.0%. For the trackdrive run this percentage is much
lower: 0.85%. That’s because during the trackdrive event the planned trajectory is much more
stable, which greatly benefits the NLOP convergence.

900

800

700

600

500

400

solve calls

300

200

100

Convergence Flags ggo

57

0 1

(a) Autocross

Convergence Flags
9282

10000

9000 [

8000 [

7000 -

6000 [

5000 [

solve calls

4000
3000 [
2000 [

1000 -
80
0

(b) Trackdrive

Figure 43: Exit flags.

63

6.3 Performance

Here the autocross target and actual odometry values are presented. As expected, a greater
missmatch exists compared to the simulation results. However, both controllers are able to
drive the car with outstanding performance maintaining the vehicle’s stability with a maximum
velocity of 12 m/s.

Target vs Actual Vx Target vs Actual Steering

Actual
04 + Target | 1

k<)
v g
Y =5
E 2
S 5
®
2 ! . s i 0.5 : . s : . s . : .
0 5 10 15 20 2 4 6 8 10 12 14 16 18
time [s] time [s]
Figure 44: Actual vs Target Figure 45: Actual vs Target
long. velocity. steering angle.
5 Target vs Actual Yaw Rate 15 Target vs Actual Vy
Actual Actual
Target Target
g 7
E E
B S

0 5 10 15 20
time [s] time [s]
Figure 46: Actual vs Target Figure 47: Actual vs Target
yaw rate. lateral velocity.

In Figure 44 it is clearly visible the correction made by the integral component of Cruise Con-
troller’s PID reducing the velocity tracking error over time.

64

w

atn
Ty
ETSEIB

The lateral deviation of the car with respect to the reference trajectory is kept within admissible
values for both tests, as it can be seen in Figure 48.

b¢<(

05 Lateral deviation ’ Lateral deviation

0.8 | 1

06]

0.2

Distance [m]
Distance [m]

04 |

-0.8

0.3 I I I I 1 I I I I
0 5 10 15 20 0 50 100 150 200

time [s] time [s]

(a) Autocross (b) Trackdrive

Figure 48: Lateral deviation.

Finally, the GG plots of the autocross and trackdrive runs are shown. The acceleration bound-
aries imposed during both tests can be found in appendix A.2. Similar to the behaviour seen in
simulation tests, the lateral acceleration exceeds the defined boundaries at some working points.
On the countrary, the longitudinal acceleration perfectly fits the given constraints.

GG plot

GG plot

o ax [a]
o ax fgl

-1 -0.5 0 0.5 1 ’ -1 -0.5 0 0.5 1
ay [g] ay [g]

(a) Autocross (b) Trackdrive

Figure 49: GG diagram.

65

7 Budget

The implementation of this project requires both hardware and software equipment. Here all
the hardware dependencies of the complete autonomous systems pipeline are addressed as well
as the used software licenses. The CAT15X autonomous driving FS single-seater employs one
32-channel LiDAR sensor, a high-performance Dual Antenna GNSS-Aided Inertial Navigation
System, a self-assembled Processing Unit, an Emergency Braking System and a Brushless DC
motor for steering actuation. Regarding the software dependencies, open source distributions
were mainly used except for Embotech’s FORCESPRO solver and IPG CarMaker simulation
framework.

Notice that the materials and manpower needed to build the monocoque, dynamics, aerody-
namics, electronics and powertrain of the CAT15X prototype won't be included in this budget.

The personal cost is divided into the wages for a junior engineer and a degree thesis tutor, of
10€/h and 30€/h respectively.

The final budget of this project is detailed in Table 2. Note that the products obtained via spon-
sorships agreements result in a final cost of O€. It’s possible that some product costs do not match
with the actual prices as the initial market prices are the ones considered in the following table.

Product Q €/unit Total Cost [€] Final Cost [€]
Velodyne VLP-32C 1 13.000,00 13.000,00 0,00
Vectornav VN300 1 4.850,00 4.850,00 0,00
Intel i9 10900 1 44407 444 07 44407
Motherboard IMB 1222 VW 1 348,00 348,00 348,00
Emergency Brake System 1 3.100,00 3.100,00 3.100,00
Remote Emergency System 1 1.735,50 1.735,50 1735,50
Maxon BLDC motor 1 300,00 300,00 210,58
FORCESPRO Engineering License
360-day subscription 3 294728 8.841,84 0,00
FORCESPRO SW License
360-day subscription 5 982,43 4912,15 0,00
FORCESPRO HW License
360-day subscription 3 11.789,13 35.367,39 0,00
IPG CarMaker License 1 - - 0,00
Junior Engineer (10€/h) 1080 10.800,00 10.800,00 10.800,00
Degree thesis tutor (30€/h) 15 450,00 450,00 450,00
TOTAL 84.148,95 17.088,15

Table 2: Budget

66

ol
Yy
ETSEIB
8 Environmental Impact

Formula Student Competitions are deeply involved with the electrification of vehicles. In fact,
the first Formula Student competition for electric cars took place in 2010 setting up a new ma-
jor challenge for the student engineering community. From then on, most of the teams started
moving into electric energy sources and drivetrain, enhancing the competitiveness of their pro-
totypes. In 2023 the last Formula Student Germany CV competiton was held, pushing the final
combustion engine teams into electrification.

Nowadays, Electric Vehicles (EVs) have emerged as a promising solution to address environ-
mental concerns associated with traditional internal combustion engine vehicles. The widespread
adoption of electric vehicles is seen as a pivotal step towards reducing greenhouse gas emissions,
mitigating air pollution, and promoting a more sustainable future.

One of the primary environmental advantages of electric vehicles is their significantly lower
tailpipe emissions. Unlike conventional vehicles powered by gasoline or diesel, electric vehicles
produce zero tailpipe emissions during operation. This shift to electric power contributes to
improvements in air quality, particularly in urban areas where vehicular emissions are a major
source of pollution.

The autonomous vehicles industry has ignited discussions about its environmental impact,
sparking both optimism and concerns. On the positive side, autonomous vehicles have the po-
tential to revolutionize transportation, making it more efficient and reducing the overall carbon
footprint. Autonomous vehicles, equipped with advanced sensors and communication tech-
nologies, can navigate traffic patterns more efficiently, minimizing congestion and subsequently
lowering fuel consumption. This improvement in traffic management could lead to a reduction
in greenhouse gas emissions and air pollutants.

67

9 Conclusions and Future Work

In conclusion, within this work a reliable high level autonomous driving control pipeline has
been accomplished. The Lateral MPC and the Adaptive Cruise Controller have proven to achieve
an outstanding performance in both simulation and testing environments. In fact, throughout
the testing period lasting one month and a half, the CAT15X drove 19.36 km in driverless mode.

The autonomous systems pipeline of CAT15X has exceeded all prior team achievements by se-
curing a P1 in the Driverless Skidpad event and achieving a P2 finish in the Trackdrive event
during the Formula Student Spain 2023 competition. In the latter event, both the Lateral MPC
and the Cruise Controller proposed in this thesis were in charge of the high level commands of
the single-seater. In the Skidpad event, as outlined in section 1.5.1, the car was guided by the
Cruise Controller together with a Pure Pursuit.

In terms of the Lateral MPC algorithm, it is able to safely run at the objective loop rate of 40 Hz,
fulfilling the control specifications defined in section 1.5.1. In addition, also complying with
the control specifications, it ensures a really high level of reliability for all the feasible velocities
range of CAT15X. Furthermore, the high-fidelity simulation software developed this season has
enabled to fine tune the controller before the actual testing started, achieving remarkable results
despite the short testing period available in Formula Student’s schedule. Finally, the presented
advanced controller has demonstrated to be robust in front of path planning re-calculations, an
essential feature when racing in unknown tracks (as in the autocross event).

The Adaptive Cruise Controller presented in this thesis has proved to achieve a small velocity
following error when employing GG-diagram based dynamic velocity profiles. Furthermore, its
PID architecture has substantially reduced the tuning complexity of the overall control pipeline.
This represents a great advantage in Formula Student field, where the testing time is extremely
limited and shared between driverless and manual modalities.

Regarding the Motion Planning algorithm, although it has not been tested on the real car it has
shown promising results in simulation. Because of its offline facet, simulation results extensively
prove its performance as its results are unique for each track.

Although the three algorithms proposed in this thesis have proven to perform well while ad-
hering to the specifications defined in section 1.5, several improvements could be introduced to
enhance its overall capabilities.

On the one hand, a coupled control solution could be developed in order to handle both steering
and throttle commands. Coupled MPC solutions have already been developed in BCN eMo-
torsport’s previous seasons. However, the extremely limited testing schedule makes the tuning
process implausible, ending with controllers with big reliability issues. The future coupled con-
trol solution should be developed together with an automatic tuning strategy so that optimal
cost function weights were guaranteed. An adaptive MPC approach could also be explored, so
the controller could dynamically adapt its tuning at the same time that is being tested. For state
of the art works on this topic see section 1.3.3.

On the other hand, due to the continuously changing online trajectory’s length, a spatial MPC
approach could be designed. The main idea behind this solution is to be able to adapt the
prediction horizon with respect to the overall distance of the received trajectory. During the
autocross event, the number of detected cones defines the total length of the trajectory. As you

68

5

\'ld‘x".'b

ETSEIB
progress along the event, more cones are detected and usually the overall detection range in-
creases (e.g. when the car is on a straight line) triggering longer planned trajectories. With the
spatial dynamic bicycle model described in 5.3.1 an MPC with dynamic horizon length could
be developed so that the discretization step changes with respect to the path length. The output
control commands should be transformed into the time domain afterwards. An initial imple-
mentation of this approach can be found here.

Finally, an enhancement to the Adaptive Cruise Controller involves incorporating a feedfor-
ward component. By calculating an initial throttle estimate based on longitudinal acceleration
values throughout the velocity profile, the feedback action of the PID controller would be then
primarily focused on refining this initial estimate.

69

https://github.com/fetty31/tailored_mpc

References

[1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

Antoni Salom Llabrés. Non-linear Model Predictive Control for a Formula Student Racing Au-
tonomous Vehicle. http://hdl.handle.net/2117/372963, 2022.

Albert Gassol Puijaner. Development of the Model Predictive Controller and Simultaneous-
Localization-And-Mapping Algorithm of the Control System. http://hdl.handle.net/2117/
358190, 2021.

Juraj Kabzan; Miguel I. Valls; Victor J.F. Reijgwart; Hubertus F.C. Hendrikx; Claas Ehmke;
Manish Prajapat; Andreas Biihler; Nikhil Gosala; Mehak Gupta; Ramya Sivanesan; Ankit
Dhall; Eugenio Chisari; Napat Karnchanachari; Sonja Brits; Manuel Dangel; Inkyu Sa;
Renaud Dubé; Abel Gawel; Mark Pfeiffer; Alexander Liniger; John Lygeros and Roland
Siegwart. AMZ Driverless: The Full Autonomous Racing System. 2019.

Sirish Srinivasan; Sebastian Nicolas Giles; Alexander Liniger. A Holistic Motion Planning
and Control Solution to Challenge a Professional Racecar Driver. 2021.

Sherif Nekkah; Josua Janus; Mario Boxheimer; Lars Ohnemus; Stefan Hirsch; Benjamin
Schmidt; Yuchen Liu; David Borbély; Florian Keck; Katharina Bachmann and Lukasz
Bleszynski. The Autonomous Racing Software Stack of the KIT19d. 2020.

Andres Alvarez; Nico Denner; Zhe Feng; David Fischer; Yang Gao; Lukas Harsch; Se-
bastian Herz; Nick Le Large; Bach Nguyen; Carlos Rosero; Simon Schaefer; Alexander
Terletskiy; Luca Wahl; Shaoxiang Wang; Jonona Yakupova; Haocen Yu. The Software Stack
That Won the Formula Student Driverless Competition. 2021.

Danilo Caporale, Alessandro Settimi, Federico Massa, Francesco Amerotti, Andrea Corti,
Adriano Fagiolini, Massimo Guiggiani, Antonio Bicchi, and Lucia Pallottino. Towards
the design of robotic drivers for full-scale self-driving racing cars. In 2019 International
Conference on Robotics and Automation (ICRA), pages 5643-5649, 2019.

Yassine Kebbati; Vicen¢ Puig; Naima Ait-Oufroukh; Vincent Vigneron; Dalil Ichalal. Op-
timized adaptive mpc for lateral control of autonomous vehicles, 2021.

Maximilian Brunner; Ugo Rosolia; Jon Gonzales and Francesco Borrelli. Repetitive Learning
Model Predictive Control: An Autonomous Racing Example. 2017.

Andréas Mihaly; Balazs Németh and Péter Gaspar. Analysis of driver behavior related to look-
ahead control. 2012.

Stan Broere and Mauro Salazar. Minimum-lap-time Control Strategies for All wheel Drive
Electric Race Cars via Convex Optimization. 2021.

Alexander Liniger; Alexander Domahidi and Manfred Morari. Optimization-Based Au-
tonomous Racing of 1:43 Scale RC Cars. 2017.

Sebastiaan van Aalst. Virtual Sensing for Vehicle Dynamics. PhD thesis, Arenberg Doctoral
School. Faculty of Engineering Science, 2020.

Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and dy-

70

http://hdl.handle.net/2117/372963
http://hdl.handle.net/2117/358190
http://hdl.handle.net/2117/358190

[20]

, 2D

fy
NI
ETSEIB

namic vehicle models for autonomous driving control design. In 2015 IEEE Intelligent
Vehicles Symposium (1V), 2015.

Eugenio Alcala Baselga. Advances in planning and control for autonomous vehicles. PhD thesis,
UPC, Departament d’Enginyeria de Sistemes, Automatica i Informatica Industrial, 2020.

Hans B. Pacejka and Egbert Bakker. The magic formula tyre model. Vehicle System Dynamics.
1992.

Prof. Dr.-Ing. Frank Allgéwer. Data-driven mpc: From linear to nonlinear systems with
guarantees. https://www.youtube.com/watch?v=9GP1dmj58cw, 2022.

Formula Student Germany. Formula student rules v1.1. https://www.formulastudent.
de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf, 2023.

A. Wéchter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applica-
tions in Process Engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
2002.

A. Wéchter and L.T. Biegler. On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming. 2006.

71

https://www.youtube.com/watch?v=9GP1dmj58cw
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2023/rules/FS-Rules_2023_v1.1.pdf

Appendices

A Testing parameters set

A.1 Lateral MPC

Parameter Summary Value [SI]
Qs Progress rate weight 10.0
Qn Normal distance weight 550.0
Qu Heading (track reference) weight 0.1
Qstip Slip difference weight 2.0
Qslack Track constraint slack weight 1000.0
Ry Steering rate weight 100.0
Ry, Additional moment weight 1.0
By Pacejka Constant 10.5507
B, Pacejka Constant 10.5507
Cy Pacejka Constant -1.2705
C, Pacejka Constant -1.2705
Dy Pacejka Constant 2208.0635
D, Pacejka Constant 2563.599
Ly Distance from CoG to front axis 0.708
L, Distance from CoG to rear axis 0.822
L Total car’s length 2.72
w Total car’s width 1.5
m Car’s mass 210.0
I, Inertial moment around z axis 180.0
Table 3: Lateral MPC parameters set
A.2 Cruise Controller
Parameter Summary Value [SI]
K, PID’s proportional gain 1.2
K; PID’s integral gain 0.1
Kq PID’s derivative gain 0.0
Ay mazx Maximum lateral acceleration 7.0
Qg maz Maximum longitudinal acceleration 4.0
Ay brake,maz Maximum braking acceleration 6.0

Table 4: Cruise Controller parameters set

B Motion Planning parameters set

Parameter Summary Value [SI]
Qs Progress rate weight 1.0
Qstip Slip difference weight 0.1
Ry Steering rate weight 14
R, Acceleration rate weight 0.3
R, Additional moment weight 1.0
By Pacejka Constant 10.5507
B, Pacejka Constant 10.5507
Cy Pacejka Constant -1.2705
Cy Pacejka Constant -1.2705
Dy Pacejka Constant 2208.0635
D, Pacejka Constant 2563.599
Ly Distance from CoG to front axis 0.708
L, Distance from CoG to rear axis 0.822
L Total car’s length 2.72
w Total car’s width 1.5
m Car’s mass 210.0
I, Inertial moment around z axis 180.0
Pair Air’s density 1.255
Agero Drag area 1.0
Cq Drag coefficient 1.2727
Crnotor Motor Constant (max. N) 4283.4645
Cy Rolling resistance (% of car’s weight) 0.45%

Table 5: Trajectory Optimizer parameters set

73

	Acronyms
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Formula Student Competition
	Driverless dynamic events

	BCN eMotorsport
	State of the art
	Driverless control
	Motion Planning
	Outside Formula Student scope

	Objectives
	Specifications
	Control Specifications
	Motion Planning Specifications

	Requirements
	Control Requirements
	Motion Planning Requirements

	Workplan

	Vehicle Model
	Kinematic Bicycle Model
	Curvature-based model

	Dynamic Bicycle Model
	Lateral tire model

	Final approach

	Lateral Model Predictive Controller
	Concept
	Non Linear Optimization Problem Formulation
	Equality Constraints
	Inequality Constraints
	Cost Function

	Implementation
	Solver
	Algorithm pseudocode
	Module architecture

	Results
	Weight analysis
	Performance

	Cruise Controller
	Concept
	Velocity Profile Calculation
	PID Formulation
	Anti-windup
	Adaptive PID

	Implementation
	Results
	Velocity profile verification

	Trajectory Optimization
	Concept
	Pre-processing
	Non Linear Optimization Problem Formulation
	Spatial Transform
	Cost Function
	Periodic Constraint
	Inequality Constraints

	Implementation
	Solver

	Results

	Overall Testing Results
	Solve time
	Exit flags
	Performance

	Budget
	Environmental Impact
	Conclusions and Future Work
	References
	Appendices
	Testing parameters set
	Lateral MPC
	Cruise Controller

	Motion Planning parameters set

